
Senior Design 2 Final Report

December 6, 2016

 AirBud
Auto Fixed Base Operator

Department of Electrical Engineering and Computer Science

University of Central Florida

Dr. Lei Wei

Sponsored by: Michael F. Young and MacAvionics

Group 4

Jordan Ruhl (Project Manager) j.ruhl@knights.ucf.edu CE
Carmen Henriquez Rojas carmenh@knights.ucf.edu EE
Mason Maines mmaines16@gmail.com CE
Francisco Galue frangalue@knights.ucf.edu EE

mailto:j.ruhl@knights.ucf.edu
mailto:carmenh@knights.ucf.edu
mailto:mmaines16@gmail.com
mailto:frangalue@knights.ucf.edu

i

Table of Contents
1 Executive Summary ... 1

2 Project Description .. 2

2.1 Project Justification and Motivation ... 2

2.2 Goals and Objectives .. 2

2.2.1 Wind Conditions Report .. 2
2.2.2 Transmit Radio Check .. 3
2.2.3 Artificial Intelligence .. 3
2.2.4 Printed Circuit Board (PCB) Interface ... 3

2.2.5 Web Interface ... 4

2.3 Product Specifications ... 5

2.4 System Description.. 6

2.4.1 Power Supply .. 6
2.4.2 VHF Aircraft Radio .. 6

2.4.2.1 Avionics Communication Standards ... 7

2.4.3 Interface Board ... 7
2.4.4 Microprocessor ... 7

2.4.5 Anemometer and Wind Vane .. 8
2.4.6 Monitor and Keyboard ... 8

2.5 Design Constraints and Standards .. 8

2.5.1 Time Constraints ... 8
2.5.2 Budget Constraints ... 8
2.5.3 Related Standards .. 8

2.5.3.1 USB .. 9

2.5.3.2 SPI ... 9

2.5.3.3 WAVE File .. 9

2.5.3.4 Pulse Code Modulation .. 10

2.5.3.5 Radio Communication Phraseology/Techniques – P-8740-47 . 10

2.5.3.6 Traffic Advisory Practices at Airports Without Operating Control
Towers – 90-42F .. 11

3 Background Information .. 12

3.1 Existing Products ... 12

3.2 Main Control Unit ... 13

3.2.1 MCU Options and Selection .. 13

3.2.1.1 Arduino Uno ... 13

3.2.1.2 Raspberry Pi 3 Model B ... 13

3.2.1.3 MCU Selection ... 14

ii

3.2.2 Communication Protocols ... 14

3.2.2.1 Push-to-Talk ... 15

3.2.2.2 TX Signal .. 15

3.2.2.3 RX Signal ... 16

3.2.2.4 Carrier Detect ... 16

3.2.2.5 Automatic gain control (AGC) ... 16

3.2.3 Tapping into the Radio .. 16
3.2.4 Language Options and Selection .. 18

3.2.4.1 MCU ... 18

3.2.4.2 Web Server .. 19

3.2.5 Text-to-Voice Software ... 23

3.3 Interfaces ... 24

3.3.1 To Radio ... 24

3.3.1.1 TX Audio... 24

3.3.1.2 PTT .. 24

3.3.2 From Radio ... 25

3.3.2.1 RX Audio .. 25

3.3.2.2 Carrier Detect ... 25

3.3.2.3 Automatic Gain Control .. 25

3.3.3 From Microcomputer ... 25

3.3.3.1 PTT .. 26

3.3.3.2 TX Audio... 26

3.3.4 To Microcomputer ... 27

3.3.4.1 SPI Bus .. 27

3.3.4.2 Carrier Detect ... 28

3.3.5 From Anemometer .. 28

3.3.5.1 Wind Speed .. 29

3.3.5.2 Wind Direction .. 29

3.4 Power .. 29

3.4.1 Voltage Source ... 29
3.4.2 DC to DC Converters .. 29

3.4.2.1 3.3V Regulators .. 29

3.4.2.2 5V Regulators ... 30

3.4.2.3 12V Regulators ... 31

3.4.2.4 -12V Voltage Inverter ... 32

iii

4 Interface Board Design .. 34

4.1 Power .. 35

4.2 SPI Bus ... 35

4.3 PTT Circuit .. 35

4.3.1 PTT Circuit Design .. 36
4.3.2 PTT Circuit Design Final Changes .. 36

4.4 Carrier Detect .. 37

4.4.1 Comparator Circuit .. 37

4.4.2 Operational Amplifiers ... 39

4.5 TX Audio Circuit .. 41

4.5.1 Audio Compression Circuit ... 43
4.5.2 Audio Conditioning Circuit ... 46

4.5.3 TX Audio Conditioning Circuit (Final Revision) 46

4.6 RX Audio Circuit .. 48

4.6.1 Audio Conditioning Circuit ... 49

4.6.2 Low Pass Filter Circuit .. 50
4.6.3 RX Audio Circuit Final Revision .. 50

4.7 Automatic Gain Control Voltage .. 51

4.7.1 Conditioner Circuit .. 51

4.7.2 Analog to Digital Converter ... 54

4.8 Audio Codec .. 55

4.9 Wind Data .. 55

4.9.1 Wind Speed .. 55

4.9.2 Wind Direction... 57

4.10 Master Schematic .. 59

5 Software Design .. 61

5.1 Main Logic Loop .. 62

5.1.1 Initialization ... 64

5.1.1.1 Wind Speed Function ... 65

5.1.1.2 Wind Direction Function ... 66

5.1.1.3 Find Average and Peak Values .. 66

5.1.2 Count Clicks Process .. 67
5.1.3 Broadcast Wind Conditions Process ... 68

5.1.3.1 Save Wind Data to Database ... 70

5.1.4 Transmit Radio Check .. 71

5.1.4.1 Transmit Radio Check with Analog to Digital Converter 71

5.1.4.2 Clean and Format passed in Audio Data 73

iv

5.1.4.3 Build WAV File ... 75

5.1.4.4 Build Data Chunk Buffer ... 80

5.1.4.5 Build Format Chunk Buffer ... 82

5.1.4.6 Build Header Buffer .. 84

5.1.4.7 Transmit Radio Check Process with USB Audio Device 86

5.1.5 Pin Layout and SPI ... 88
5.1.6 MCP3008 .. 90

5.1.6.1 Background Information ... 90

5.1.6.2 Analog to Digital Conversion .. 90

5.1.6.3 MCP3008 Communication Logic .. 93

5.2 Configuration Screen ... 95

5.3 Web Server ... 96

6 Integration, Prototype, and Final Design ... 97

6.1 Interface Board Breadboarding ... 97

6.1.1 PTT Circuit .. 97

6.1.2 RX Audio Circuit.. 97
6.1.3 TX Audio Circuit .. 98

6.1.4 3.3V Regulator Circuit ... 100
6.1.5 Carrier Detect Comparator Circuit ... 101
6.1.6 AGC Conditioner Circuit .. 102

6.2 Signal Conditioning Testing ... 105

6.2.1 RX Audio Circuit.. 106
6.2.2 AGC Signal ... 110

6.2.3 PTT Signal .. 111

6.3 Interface Board Protoboard Design ... 112

6.4 Printed Circuit Board ... 114

6.5 PCB EagleCAD Wiring .. 117

7 Testing ... 118

7.1 3.3V Voltage Regulator Testing Procedures 118

7.2 5V Voltage Regulator Testing Procedures .. 119

7.3 12V Voltage Regulator Testing Procedures .. 119

7.4 -12V Voltage Regulator Testing Procedures 120

7.5 PTT Testing Procedures .. 120

7.6 TX Audio Testing Procedures .. 120

7.7 RX Audio Testing Procedures ... 121

7.8 Anemometer Testing Procedures .. 122

v

7.9 Wind Vane Testing Procedures ... 122

7.10 Testing Modules on PCB.. 123

7.11 Raspberry Pi Testing Procedures .. 125

7.12 Unit Tests ... 125

7.12.1 Clean and Format Passed in Audio Data Testing Procedures... 126
7.12.2 Build Data Chunk, Build Format Chunk, and Build Header Chunk
Testing 128

7.13 System Testing Procedures ... 129

8 Management ... 131

8.1 Milestones ... 131

8.3 Budget and Finances... 132

8.4 Team Member Time Management .. 133

9 Appendix ... 134

9.1 Datasheets .. 134

9.1.1 TPS 63700 Voltage Inverter .. 134
9.1.2 TL084 Op-Amp ... 134

9.1.3 LM234 Op-Amp... 134
9.1.4 2N4403 PNP Transistor .. 134
9.1.5 2N4401 NPN Transistor .. 134

9.1.6 2N3820 FET ... 134

9.1.7 BC546 NPN Transistor ... 134

9.1.8 LM393 Comparator ... 134
9.1.9 LM124W Op-Amp ... 134

9.1.10 MCP3008 Analog to Digital Converter 134
9.1.11 2N5458 JFET .. 134
9.1.12 78L12 Voltage Regulators ... 135

9.1.13 AC90-50D .. 135
9.1.14 Raspberry Pi 3 Model B ... 135

vi

Table of Figures
Figure 2.1 GUI Example ... 4
Figure 2.2 System Block Diagram .. 6
Figure 2.3 King KX-170B Radio .. 7
Figure 3.1 Potomac Aviation Micro Tower .. 12
Figure 3.2 KX-170B Receive Mode .. 15

Figure 3.3 KX-170B Transmit Mode ... 15
Figure 3.4 Radio Backplate .. 17
Figure 3.5 Where team tapped into radio for AGC and RX Audio 18
Figure 3.6 Original vs. Clipped Signal .. 26
Figure 3.7 Hard Limiter vs. Soft Limiter Output... 27

Figure 3.8 AGC Data Flow ... 28
Figure 3.9 Wind Direction Data Flow .. 28

Figure 3.10 3.3V Regulator .. 30
Figure 3.11 5V Regulator ... 31
Figure 3.12 12V Regulator ... 31
Figure 3.13 TPS 63700 Pin Layout ... 32

Figure 3.14 Efficiency at 12V output ... 32
Figure 3.15 -12V Supply TI Reference Schematic .. 33

Figure 4.1 Interface Board Block Diagram .. 34
Figure 4.2 PTT Block Diagram ... 35
Figure 4.3 PTT Circuit .. 36

Figure 4.4 LM393 ... 37
Figure 4.5 Comparator Circuit .. 38

Figure 4.6 ... 39
Figure 4.7 LM124W Pinout ... 40

Figure 4.8 TL084 Pinout ... 40
Figure 4.9 TX Audio Schematic Section 1 .. 41

Figure 4.10 TX Audio Schematic Section 2 .. 41
Figure 4.11 TX Audio Circuit Block Diagram .. 42

Figure 4.12 TX Audio Compressor Schematic.. 43
Figure 4.13 FET Audio Peak Limiter (Georgia Tech Permission Pending Unused
in Final Revision) .. 44
Figure 4.14 TX Audio Low Pass Filter Schematic... 46
Figure 4.15 TX Audio Conditioning Circuit (Final Revision) 46

Figure 4.16 RX Audio Schematic .. 48

Figure 4.17 RX Audio Circuit Block Diagram .. 48

Figure 4.18 RX Audio Conditioning Schematic ... 49
Figure 4.19 RX Audio Low Pass Filter Schematic .. 50
Figure 4.20 RX Audio Circuit Final Revision ... 50
Figure 4.21 Interface Board AGC Schematic.. 52
Figure 4.22 Relationship between Voltage Out and dBm 53

Figure 4.23 Relationship between Voltage Out and uV 53
Figure 4.24 MCP3008 .. 54
Figure 4.25 Data Flow .. 54

vii

Figure 4.26 Audio Codec Pinout ... 55

Figure 4.27 Anemometer Switch .. 55
Figure 4.28 Anemometer Schematic .. 56

Figure 4.29 Internal Schematic Diagram .. 56
Figure 4.30 Wind Speed Circuit .. 57
Figure 4.31 Anemometer Schematic .. 57
Figure 4.32 Op-Amp ... 58
Figure 4.33 Data Flow .. 58

Figure 4.34 ... 59
Figure 5.1 Main Logic Loop .. 62
Figure 5.2 Initialization .. 64
Figure 5.3 Wind Speed Function .. 65
Figure 5.4 Wind Direction Function .. 66

Figure 5.5 Count Clicks .. 67
Figure 5.6 Broadcast Wind Conditions ... 69

Figure 5.7 Commit Data to Database ... 70

Figure 5.8 Transmit Radio Check using ADC ... 71
Figure 5.9 Build WAV File .. 75
Figure 5.10 Build Data Chunk Buffer .. 80

Figure 5.11 Build Format Chunk Buffer .. 82
Figure 5.12 Build Header Buffer ... 84

Figure 5.13 Transmit Radio Check ... 87
Figure 5.14 Raspberry Pi 3 GPIO Header Layout .. 88
Figure 5.15 Relationship between Input Voltage and 10-bit Value with Expected
 ... 92

Figure 5.16 MCP3008 Logic ... 93

Figure 5.17 MCP3008 Channels .. 94
Figure 5.18 Screenshot of Configuration Screen .. 95

Figure 6.1 PTT Circuit Breadboard ... 97
Figure 6.2 RX Audio Circuit Breadboard .. 97
Figure 6.3 TX Audio Compressor Circuit Breadboard .. 98

Figure 6.4 TX Audio Low Pass Filter Circuit Breadboard 98
Figure 6.5 Section of Overall Breadboard .. 99

Figure 6.6 ... 100
Figure 6.7 3.3V Regulator Circuit Breadboard .. 100
Figure 6.8 ... 101

Figure 6.9 Comparator Circuit Breadboard ... 101

Figure 6.10 AGC Conditioner Circuit Breadboard ... 102
Figure 6.11 ... 103
Figure 6.12 ... 103

Figure 6.13 ... 104
Figure 6.14 ... 104
Figure 6.15 ... 105
Figure 6.16 ... 105
Figure 6.17 RX Audio Input .. 106
Figure 6.18 RX Audio Input with No Offset ... 107

viii

Figure 6.19 Filtered RX Audio at 4KHz ... 108

Figure 6.20 Filtered RX Audio at 9KHz ... 109
Figure 6.21 RX Audio Circuit Through Low Pass Filter 109

Figure 6.22 ... 111
Figure 6.23 ... 111
Figure 6.24 ... 112
Figure 6.25 Interface Board Protoboard ... 113
Figure 6.26 PCB Version 1 without components .. 114

Figure 6.27 PCB Version 1 with components ... 115
Figure 6.28 PCB Version 2 with components ... 116
Figure 6.29 Comparison of PCB Version 1 and PCB Version 2 116
Figure 6.30 PCB Version 1 EagleCad Diagram .. 117
Figure 6.31 PCB Version 2 EagleCad Diagram .. 118

Figure 8.1 Milestone Chart ... 131
Figure 8.2 Team Budget as of 12/5/2016 ... 132

1

1 Executive Summary

When a pilot chooses to fly there are a few things that the pilot must know for
certain. Before a pilot takes off they should know that their microphone, radio, and
headset are operational. This is so that they can communicate with other pilots in
the area in order to avoid deadly collisions and for communicating with Air Traffic
Control at another airport soon after takeoff. Also, as they come into land, a key
piece of information to know is the wind direction, wind speed, and gusts at the
airport they are landing at. This is because pilots always need to land into a
headwind to shorten their landing distance. And if a crosswind exists (and they
usually do) the pilot needs to know so they can choose the best runway to land on.

Usually Fixed Base Operators (FBO) are the ones to relay this information to the
pilots over the radio, but some airports do not have FBOs. This creates a problem
for the pilots who need that very information. One solution to try to mitigate this
issue at such airports is a windsock. A windsock is a light and flexible cone of fabric
mounted on a mast, usually somewhere along the airstrip of an airport. Windsocks
let the pilots know some of the important weather readings, such as wind direction,
but they are small and cannot be seen until the aircraft is very close to the airport.
On the other hand, there are some automated systems currently on the market
that perform task such as broadcasting weather conditions and transmit radio
checks, but they are costly and not suited for smaller airports.

The proposed project is a low-cost system that satisfies these two basic needs.
This system needs to broadcast important weather information when prompted by
pilots in the area. For example, when the system is prompted, the system will
broadcast a weather report that includes the latest recorded wind direction and
wind speed as well as gusts. This system also needs to perform a transmit radio
check for any pilot that consists of recording the transmission from the pilot and
playing it back so the pilot knows exactly how operational their equipment is.
Therefore, this can be classified as an “Auto Fixed Base Operator” for small
airports. This “Auto Fixed Base Operator” would act as a hub of communication for
these small airports that do not have a dedicated FBO or weather station. This
system would provide a source from which any pilot can obtain crucial weather
information or perform any radio communication checks they need prior to taking
off and landing their aircrafts. We call it the AirBud.

Our goal is to use our technical experience to connect a weather station and VHF
radio through an interface board to a microprocessor that can process all of the
necessary information. Using these components, we will build a system that can
assist pilots in taking off and landing safely, all while being configurable and cost-
effective.

2

2 Project Description

2.1 Project Justification and Motivation

The idea for the AirBud came to fruition when our sponsor Michael Young,
professor at UCF, started flying out of Orlando Apopka Airport where there is no
control tower or FBO. He sought out products that would fit his needs to broadcast
weather conditions and perform radio checks and found a few. But products he
found would cost over $75,000 to install and maintain. He came to our senior
design class to pitch the project to us and we accepted the challenge to build a
system for his home airport.

Our motivation for this project is the safety of pilots and passengers at these
smaller airports with no FBO. When pilots aren’t sure of wind conditions they do
not know which runway to land on. The airports that don’t have a dedicated FBO
usually don’t have the financial means to fund the expensive automatic weather
systems on the market. Our system would become the model for a low-cost
effective solution.

2.2 Goals and Objectives

Our goal for this project is to create a low-cost, easy to maintain system for small
airports that provides the basic communication services offered by an FBO. The
system will be in a hangar at Apopka Airport and when prompted by pilots, through
transmission radios, perform the tasks of broadcasting wind conditions and
transmit radio checks. Once we had the broad goal of our project defined, we
decided on some main objectives to determine the success of our project by.

2.2.1 Wind Conditions Report

The wind conditions report is one of our main functions of the system. When the
user/pilot keys the mic a specified number of times, the system should broadcast
wind conditions. This wind conditions report should be accurate within ±1 knot and
±5 degrees. It will need to check if the channel is occupied and only broadcast
when the channel is unoccupied.

Another feature of this function is to broadcast an updated weather report if the
conditions change more than a specified amount. For example, if the system
broadcast that winds are 5 knots at 120 degrees, and they change to 10 knots or
150 degrees, the system will broadcast the new wind conditions so that the pilot is
always up to date with the most current and accurate conditions.

This also touches on the Crosswind Alert the system will have. A crosswind is
when winds blow near perpendicular to a runway, and this causes makes landing
more difficult. Our system will detect when a crosswind exists and broadcast an
alert. The system should also announce when a runway is “favorable” to land on.

3

A pilot wants to land into headwind so the length of their landing is shorter. If the
system detects winds are more than, say, 5 knots and they are in the direction of
a runway, the system should announce that that runway is favorable to land on. All
specified parameters discussed in this and following sections are given by the user
and discussed more in the “Web Interface” below.

2.2.2 Transmit Radio Check

The second main function of our system is a Transmit Radio Check. Before a pilot
takes off, they want to ensure that their mic, radio, and headset work so they can
communicate with Air Traffic Control (ATC) and other pilots. Normally, the pilot
would contact the FBO and the FBO would respond with a radio check and wind
conditions. Our system will be used at an airport without an FBO. When the user
keys the mic a specified number of times, the system should prompt the user for a
Transmit Radio Check. The system will listen to what the pilot says, and play it
back exactly how it was heard and then give the power level of the transmission.
This way the pilot can verify their mic and radio are operating normally. During this
process, the system will verify that the channel is not occupied before transmitting.

2.2.3 Artificial Intelligence

Both main functions of the system will use the microcomputer as the driving force
using software to determine what actions are performed and when, which can be
viewed as a form of AI. The microcontroller of choice should have all code written
on it and use that as the logic for the system. It should be a “headless” system that
does not need any setup process, meaning when the microprocessor has power,
the software is running. The microcontroller will take input from the GPIO pins on
the board and output in similar fashion. The microcontroller should also be able to
act as a database in order to store and log previous weather broadcasts and
transmit checks. Thus, the microprocessor should have access to a good amount
of flash storage making the system run quickly and effectively. All of this will be
controlled by the AI to determine what actions to take and what to broadcast. Our
options and selection for a microprocessor are further discussed in Section 3.2.1.

2.2.4 Printed Circuit Board (PCB) Interface

In order to interface the radio base station and the microcomputer we will need to
design and build custom circuitry and ultimately fabricate a PCB. This PCB will
have all necessary inputs from the radio base station and convert them into usable
signals for the microcomputer. For example, the radio operates on 13.8V but a 5V
and 3.3V power sources are needed. The PCB will have these power supplies. In
turn, it will also create usable signals for the radio that come from the
microcomputer. The wind sensors would also be connected to the PCB and the
data processed by the microcomputer.

4

2.2.5 Web Interface

Our device will also be a local web server that serves the function of a graphical
interface that the user can get information from the system. The user will be able
to specify any parameter and adjust the system. For example, if the user wants to
change the number of clicks for the weather report, they will be able to change that
from the web interface. This interface will also show a graphic of the runway, a
compass overlay, and the wind conditions so that the user can get a graphical
representation of the current weather situation like what is shown in Figure 2.1.
The user should be able to type in the IP address of the microcomputer and then
access the web interface within a small range of the system.

Figure 2.1 GUI Example

5

2.3 Product Specifications

 The system shall use a power supply, radio, anemometer, and
microcomputer.

 The system shall broadcast the current weather conditions when the pilot
keys the mic with the specified parameters.

 The system shall update the pilot and broadcast the current wind conditions
if they change outside of the chosen parameters.

 The system shall perform a “Comm Check” when the pilot keys the mic with
the specified parameters that does the following

o Prompts pilot for Transmit radio check
o Records the audio from the pilots comm radio
o Plays back what is heard
o Reports the power level of the received signal

 The system shall allow the user to change any parameter below.
o Carrier Dwell Time (ms): min & max
o Interval Period between Carriers (ms): min & max
o No. of clicks for Weather report
o No. of clicks for Comm radio check
o When to report gusts over steady winds (kts)
o When to report variable winds (degree variation)
o History time for variation (secs)
o When to announce UPDATE: deg change (deg.) & wind change (kts)
o Wait time after last report to announce UPDATE (minutes)
o Runway Headings (degrees)
o When to announce CROSSWIND WARNING: wind speed (kts) and

degrees min and max (degrees)
o When to announce WINDS FAVOR runway choice #1: wind speed

(kts) and degrees min and max (degrees)
o When to announce WINDS FAVOR runway choice #2: wind speed

(kts) and degrees min and max (degrees)

 The system shall have a web IP graphical interface from which the user can
read the current winds and make parameter changes.

 The system shall announce crosswind warnings if they are present.

 The system shall announce a favorable runway if conditions fall within
chosen parameters.

 The system shall not broadcast if the radio channel is occupied.

 The system shall operate on the airports UNICOM frequency.

6

2.4 System Description

Figure 2.2 System Block Diagram

The block diagram above shows the overall system which is comprised of five main
components; the power supply, the VHF aircraft radio, the interface board, the
microprocessor, and the anemometer. Every component will be connected to the
central interface board for everything from power distribution to data transfer. The
items and their specifications are listed below.

2.4.1 Power Supply

The power supply will be a 13.8V 5 Amp power supply.

2.4.2 VHF Aircraft Radio

The VHF Aircraft Radio our system is using is a KX-170B, a solid-state
NAV/COMM transceiver manufactured by King in the mid-1970s. It features 720
COMM frequencies and was an industry standard for many years due to its
reliability and dependability.

7

Figure 2.3 King KX-170B Radio

2.4.2.1 Avionics Communication Standards

Because AIRBUD is going to be a repurposed VHF Aircraft Radio there is a specific
set of communication protocols, set by the Federal Aviation Administration, that
need to be accounted for before any transmission is used. These standards dictate
the hardware design, from which signals need to be taken into account prior to
transmission to the output frequency of the radio. In the FAA’s “REQUIREMENTS
FOR 760 CHANNEL VHF RADIO FOR AERONATICAL OPERATIONS” there are
many UNICOM broadcast frequencies that can be used by the KX-170B Radio.

Frequency Range (MHz) System Purpose

122.700-122.725 UNICOM
Uncontrolled Airport and
Aeronautical Utility

122.800 UNICOM Uncontrolled Airport

122.950 UNICOM
Airport with full time ATCT of
full time FSS

122.975-123.000 UNICOM Uncontrolled Airport

123.050-123.075 UNICOM Uncontrolled Airport

136.100-Up UNICOM or AWOS For Future Use

2.4.3 Interface Board

The Interface PCB Board will be a custom made PCB board used to communicate
between the KX-170B VHF Aircraft Radio, Raspberry Pi 3 Model B, and Davis
7911 Anemometer. This interface board will also be responsible for power
distribution to all all circuits except the Raspberry Pi 3. As well as be prepared for
individual signal testing without the radio at hand.

2.4.4 Microprocessor

The microprocessor our system is using is a Raspberry Pi 3 Model B.

8

2.4.5 Anemometer and Wind Vane

The anemometer our system uses is a Davis Instruments 7911 Anemometer. It is
a component of the Weather Monitor II and Weather Wizard III, both of which are
complete weather stations also manufactured by Davis Instruments. The 7911
Anemometer features 3 polycarbonate wind cups to measure wind speed and a
UV-resistant ABS plastic wind vane to measure wind direction. It comes with a 40-
foot long, 26 AWG cable that ends with an RJ-11 connector. It can measure wind
speeds up to 173 knots (200 mph) with a 1 knot resolution and a ±5% accuracy. It
can also measure wind direction from 0 degrees to 360 degrees with a 1-degree
resolution and a ±7% accuracy.

2.4.6 Monitor and Keyboard

These peripherals will be connected to and used by the Raspberry Pi. They can
be of any variety as long as they are connected through via HDMI cable for the
monitor and USB for the keyboard. They will be used to interact with the Raspberry
Pi and view or modify code and graphical user interfaces.

2.5 Design Constraints and Standards

2.5.1 Time Constraints

This project will be a complete working product by the end of Senior Design II in
Fall 2016. This creates a limited timeframe for the team to work with. The total time
for this project is about 28 weeks, and to develop, design, build, and test a system
of this nature will take diligence to complete in that amount of time. The plan is to
have a working prototype at week 11, at the end of Senior Design I. This in and of
itself is a lofty goal and requires teamwork and persistent hard work.

2.5.2 Budget Constraints

The team is comprised of four college students with limited incomes, which limits
the solutions, but also provides motivation to make this as low-cost of a system as
possible. Our primary sponsor has provided us with $250 towards our project and
that has been set as the target cost for the entire system. Another sponsor has
offered an additional $500 past the primary sponsor’s initial budget. If the need
arises, the team can use up to $750 before having to use personal funds. This
provides us with a good financial base to build our project on, but without having
unlimited funds, the team will have to be mindful of the limited budget.

2.5.3 Related Standards

Below are sections dedicated to standards that are a part of our project at this
point.

9

2.5.3.1 USB

USB, short for Universal Serial Bus, was developed in the 1990s and standardized
cables, connectors, and communications protocols used in a bus for
communication between electronic devices. Many microcomputers come with USB
ports which are usually USB 2.0 HSIC. HSIC, short for High-Speed Inter-Chip,
eliminates the analog transceivers found in normal USB and was adopted in 2007.
Utilizing HSIC allows the USB to use 50% less power and 75% less board area
and have a throughput of 480 Mbit/s.

2.5.3.2 SPI

Serial Peripheral Interface (SPI) bus is a synchronous serial communication
method over small distances primarily used for embedded systems. SPI was
developed by Motorola and quickly became a de facto standard among the
industry. SPI devices communicate in full duplex mode using a master/slave
architecture as long as there is only one master. In our case, the microcomputer
will act as the master and the AGC voltage, RX audio, and wind direction. This bus
will be helpful as it can provide the microcomputer a bit stream of data to interpret.

2.5.3.3 WAVE File

We will be using the WAVE format standard for storing audio data. The WAVE file
standard was introduced as a joint standard from the IBM Corporation and the
Microsoft Corporation in the “Multimedia Programming Interface and Data
Specifications 1.0” standard document released in August of 1991. The WAVE file
standard in particular was introduced as a substandard of the RIFF, or the
Resource Interchange File Format, standard for storing multimedia. While old we
chose this standard because it is the most common form of uncompressed audio,
and is recognized across all systems as well as multiple audio centered programs.
By using the WAVE format standard, we did not have to commit to a certain form
of audio compression standard. This will allow us to directly interface with the raw
audio data, as well as compress the data using any of form of audio compression
standard in the future if we feel we need to compress the data.

The WAVE file format standard organizes the data it stores using what the RIFF
standard defines as “chunks”. Each of these chunks, while having no particular set
order to where they are located within the file, contain their own specific sets of
fields and parameters. For the WAVE file format, the standards indicate that there
are only three chunks that are required for any WAVE file; these three chunks
include: the Header chunk, the Format chunk, and the Data Chunk. While there is
no set order for these chunks, the adopted standard is to write each of the chunks
in the order they were introduced above. This allows for readability, and the ability
for programs to know where to look for certain information without the need of
including more header information about where data is located. This reduces the
file size and the speed in which the file can be processed. Two optional chunks,
the List chunk and the Info chunk, can be included in a WAVE file to document the
order in which the various chunks appear in the current WAVE file. These two

10

chunks are usually place right after the Header Chunk and are only included for
compatibility with software that did not follow the suggested chunk order adopted
by the industry.

Each of the required chunks outline the basic needs of any multimedia player. The
first is Header Chunk which specifies the multimedia format standard used by the
file as well as the particular substandard of multimedia used. In the case of the
WAVE format standard, the RIFF standard for multimedia, and the WAVE
substandard are always included in the Header chunk. Along with these two fields
the Header chunk contains the size (in bytes) of the rest of the file. The next
required chunk, the Format chunk, is uses to specify the format in which the WAVE
file was being recorded. Along with the standard chunk id and chunk size that
outlines which chunk is being read and how large the chunk is, these fields are
almost all variable and include the sampling rate, byte rate, number of channels,
and bit resolution used to record the audio data. The only other major field to note
that is included in the Format chunk is the Audio Format field which is used to
specify what audio recording standard is being used to record the data. Because
we are using an Analog to Digital converter to sample the audio we are recording,
we will use the Pulse Code Modulation, or PCM, standard or audio recording.
Lastly the WAVE file format standard requires the data chunk which is responsible
for storing the raw audio data sampled in the audio format specified in the Format
Chunk. This data is encoded in two’s compliment format and then stored in the
Little Endian format.

2.5.3.4 Pulse Code Modulation

We will be using the Pulse Code Modulation audio format standard for recording
audio data. This standard is used to digitally represent the analog audio data being
recorded. We chose to use the PCM standard for recording audio data, as it directly
coincides with how we will be receiving data from the analog to digital converter.
The PCM standard requires taking a sample of an analog audio signal and
representing it using a decimal number. Because most analog to digital converters
use PCM to sample analog data, we will be using this standard to record audio
data in the File Format standard we chose to store it.

2.5.3.5 Radio Communication Phraseology/Techniques – P-8740-47

One very important aspect of working with aircraft radio and information
communication is using the proper terminology. Communication in the avionics
world is drastically different that of every day. This is due to the large amount of
noise that a pilot can experience while in the cockpit. For this same reason different
information has different methods of communication in avionics communication.

When wind direction and wind speed are being communication it is important to
take note that each number must be announce in order. This same process applies
to multiples of instances in aircraft communication, but wind speed and direction
are the ones that the system will be communicating.

11

Information Being
Relayed

Example
Message Content

Non-Avionic
Pronunciation

Avionic
Pronunciation

Wind Direction 135º One hundred and
thirty-five degrees

One three five
degrees

Wind Speed 30 Kts Thirty knots Three zero knots

As shown the information being relayed is done so in individual numbers. This is
to avoid misinformation in the message. The reason is because one
misunderstanding in the information between system and user can result in the
pilot using the wrong landing direction, and that can have dangerous, and even
lethal results.

2.5.3.6 Traffic Advisory Practices at Airports Without Operating Control

Towers – 90-42F

The Traffic Advisory Practices at Airports Without Operating Control Towers
defines AIRBUD as a UNICOM system, under the guidelines that it is a
“nongovernmental air/ground communication station which may provide
information at public use airports.” (Traffic Advisory Practices at Airports Without
Operating Control Towers, § 4 (1990). Print.)

In this standard is it state that UNICOM stations can provide wind direction and
wind speed information to pilots upon request. Regardless if the UNICOM station
shares the same operating frequency as the Common Traffic Advisory Frequency,
CTAF. This is important because in small airports like the one AIRBUD will operate
in the CTAF can common be assigned to a designated UNICOM frequency
operating range. This is ideal for a small airport as the small amount of air traffic
can be managed by commercial systems like AIRBUD, but in larger airport where
the CTAF is different from the UNICOM frequency this can present itself a
challenge as the pilot would have to switch between frequencies to communicate
with the UNICOM system.

This standard also calls for communication with UNICOM stations of at least 10
miles from the airport the station is in. This forces out system to be able to operate
at such distances in order to comply with standards.

12

3 Background Information

3.1 Existing Products

There are products currently on the market that meet or exceed our product
requirements. They are autonomous or unmanned control tower like services that
provide pilots with necessary information like the weather conditions and radio
checks our system will provide. These products usually provide way more services
for the pilots like monitoring traffic in the airspaces and broadcasting that
information as well. Also, there is the more traditional approach of having a
dedicated FBO at the airport in question. These are all fine mitigations to the issue
of getting necessary information while piloting an aircraft, but they all have a major
flaw; cost. These systems have a high acquisition cost and some also require a
maintenance cost. This can be a justified cost for airports that either really need
the information for air traffic such as remote airports for rescue missions or supply
drops, or smaller international airports that don’t have enough air traffic to justify
the cost of an entire control tower. But for the small regional airport of Apopka,
these options are just too expensive.

Figure 3.1 Potomac Aviation Micro Tower

The most related similar product is the Potomac Aviation Micro Tower (Figure 3.1).
The Micro Tower is an all-in-one system that operates on the area’s CTAF
frequency (Usually UNICOM) and provides the same core services that our system
will provide. The Micro Tower can broadcast wind conditions, altimetry, visibility,
and runway advice. The Micro Tower can also perform the same comm check our
system will have by recording and playing back a pilot’s transmission and giving
the power level of that transmission.

Where this system exceeds is its AI capabilities with all that information. For
example, if the Micro Tower detects an occupied airspace, it can make its
messages shorter, as to not take up too much time in the broadcast so other pilots
can communicate when necessary. Also, if the visibility is greater than 10 miles,

13

the Micro Tower won’t broadcast that with the weather advisory message. The
other benefit of this system is how it’s powered. The Micro Tower is completely
solar powered, meaning it can be set up anywhere in the world and not have to
rely on a power source. These features are why there are 150 Micro Towers set
up in the world with 100 of those in the United States.

For many rural airports or landing sites, this is an optimal solution. Places that don’t
necessarily need or can’t afford the multiple thousands of dollars cost of dedicated
weather and broadcasting equipment can use this and not have to worry about
finding power sources or network connectivity. Where the Micro Tower fails
Michael Young’s needs is the cost. When Young inquired about the Micro Tower,
the quoted price for the product was well over $75,000. This was way too much
money to spend at an airport such as Apopka with as little air traffic as it has,
especially for one individual, which is why we are creating an incredibly more cost-
effective solution.

Overall this solution far exceeds the needs of a small airport such as the one in
Apopka, and the price is similarly outlandish when the fact that they are mostly
self-funded is taken into consideration. Michael Young could not afford the
expensive Micro Tower and wanted a similar product without the cost, which is
why we are building this low-cost solution called the AirBud.

3.2 Main Control Unit

3.2.1 MCU Options and Selection

3.2.1.1 Arduino Uno

The Arduino Uno is a microcomputer based on the ATmega328P. It has an
operating voltage of 5V, 14 digital I/O pins (6 of which provide PWM output), 6
analog input pins, a USB connection, a power jack, a reset button, and runs at
16MHz. The ATmega328P, an 8-bit AVR RISC-based microcontroller, provides
the Arduino with 32KB of flash memory, 2KB of SRAM, and 1KB of EEPROM. It
also supplies 32 general purpose registers, serial programmable USART, SPI
serial port, and an 8-channel 10-bit A/D converter. With the integrated A/D
converter and reliably tested and documented hardware this is a good option.

3.2.1.2 Raspberry Pi 3 Model B

The Raspberry Pi 3 Model B is a fully fledged microcomputer with a 1.2GHz 64-bit
quad core ARMv8 CPU, 1GB of LPDDR2 RAM running at 900 MHz, 4 USB ports,
and naturally runs a distribution of Linux called Raspbian. Other features of this
microcomputer include 10/100 Ethernet, 2.4GHz 802.11n wireless, Bluetooth 4.1,
3.5mm audio jack, and a microSD card slot. The Pi’s main line of communication,
at least for our purposes are the 40 GPIO pins which also provides support for SPI
communication. It runs on 5V and can output 3.3V or 5V through the GPIO pins.

14

The sheer computing power and endless documentation of the Raspberry Pi 3
make this a good option.

3.2.1.3 MCU Selection

When deciding which microcomputer to use we went back and forth deciding what
would be best. We knew our system would have a couple analog inputs to the
microcomputer so an Arduino Uno would be best suited for that purpose. On the
other hand, the immense computing power of the Raspberry Pi 3 was enticing. We
ultimately decided on using the Raspberry Pi 3 for our system for a few reasons.

The first and possibly biggest reason for using the Raspberry Pi 3 is the operating
system it naturally runs, Raspbian. Raspbian is a distribution of Linux and would
allow us to code our project in Python. Using python would allow us to use a
database framework like Django to store any data on the Pi itself. The software
selection process is further discussed in Section 3.2.3, but having such a malleable
piece of hardware to write software on was a useful feature. Using the Raspberry
Pi 3 as a basic Linux computer allows us to possibly set up a graphical interface in
the future, while also providing us with a headless command setup now.

Another feature on the Raspberry Pi 3 that contributed to its selection is the 2.4GHz
802.11n wireless capabilities and the 10/100 Ethernet port. This allows us to easily
install new software and packages directly from a webpage (as long as there’s an
internet connection) and set up a local web server. One of the goals of this project
is to have a web interface that the user can modify parameters from. Having the
Ethernet port lets the user plug in their computer and access a web interface we
set up that’s run on the Raspberry Pi 3.

The last big reason we chose to use the Raspberry Pi 3 is for the amount of GPIO
pins and the accessories we can use with them. There are a lot of connections
going into and out of the microcontroller and having 40 GPIO pins is useful. Without
using the Arduino Uno and its native A/D converters, we knew we would have to
use an external A/D converter. We found the MCP3008 that worked perfectly on
the SPI bus provided by the Raspberry Pi 3 GPIO pins. Using this setup and
leaving a multitude of pins open for other uses as we need them is vital to the
system’s success.

3.2.2 Communication Protocols

The nature or VHF Radios in aircraft communication has become critical in the
communication of information between traffic control towers and aircrafts all
around the country. Radios have communication protocols that need to be
addressed prior, during and after communications. These protocols dictate who
communicates, which signal propagates in the given frequency band and if your
VHF will listen or transmit. These signals will need to be filtered and manipulated
in such a way that the Raspberry Pi 3 will be able to interpret them and use them
to follow adequate protocol for communication.

15

3.2.2.1 Push-to-Talk

PTT has been a standard of two-way radio communication for quite some time.
The nature of half-duplex communication systems is that there has to be some sort
of signal flag to alert the transceiver that it is time to stop receiving and ready for
transmission. The reason it is called push to talk is that the action required for this
stage is top push the button on the microphone and it has been colloquially applied
to the vernacular. What the button actually does is pull the PTT relay in the KX-
170B radio to ground, thus setting it into transmit mode. For the case of this system
what will be done is that through one of the GPIO pins of the Raspberry Pi 3 and
a PTT circuit in the interface board, the MCU will ground the relay and set the radio
into transmit mode.

Figure 3.2 KX-170B Receive Mode

Because the KX-170B VHF Aircraft radio is a half-duplex communication system
it can only do one of the two communication functions at a time. When the PTT is
not grounded the KX-170B is in ‘Receive Mode” and can receive incoming audio
signals.

Figure 3.3 KX-170B Transmit Mode

But when the PTT is grounded the KX-170B switches to ‘Transmit Mode’. In this
mode the system cannot process any received audio and any communication to it
is essentially lost.

3.2.2.2 TX Signal

Of the two functions a half-duplex system can make during communications is to
transmit a message to a receiver. The TX signal is signal that is send out and
carries that transmitted message. For the intended operation purposes of this
airport the transmission frequency will be 123.05MHz. During transmission the
half-duplex system will by nature be unable to receive any kind of transmissions.

16

3.2.2.3 RX Signal

The received signal from the KX-170B Radio will be sent to the interface board
through soldering into the positive end of the volume potentiometer. This signal will
be received at 123.05MHz as assigned to the airport that we will use the system
in. The importance of this signal is that it will allow the Raspberry Pi 3 to interpret
what the pilot wishes to do with our device, and which steps will be taken later as
a result of that.

3.2.2.4 Carrier Detect

Carrier Detect, in communications, is present in the squelch circuit with the function
of suppressing the audio output of a receiver in the absence of a higher amplitude
and strong input audio signal. The squelch can be opened, allowing all audio
signals entering the receiver tap to be heard. This circuit can be useful when
attempting to hear weak or distant audio signals. Squelch operates alone on the
detection of the strength of the signal; when a device is set to mute, there is no
audio signal present. Knowing if there is a carrier detect present, at the squelch,
will allow the MCU know when there an audio signal present.

3.2.2.5 Automatic gain control (AGC)

Automatic Gain Control is a closed loop-feedback circuit where a signal is fed into
and it’s expected to maintain and regulate to certain level of amplification. This
signal can be sound or radio frequency. The AGC can give us two different cases
for output. The first case is if the level of the input signal is too low, the designed
system will output an amplified signal to the desired level. The second case is if
the input signal is too high, the designed system will output a lowered signal to the
desired level as well. The purpose of this system is to maintain a constant level for
the output signal giving a wider range of input signal levels. AGC is commonly used
is radio receiving to help equalize the desired average volume due to different
levels received in the strength of signals and fading of the same. One of the
consequences of not using an AGC is seen in the relationship between the signal
amplitude and the sound waveform – the amplitude of this signal is proportional to
the radio signal amplitude. The information contained by the signal is carried by
the changes of the amplitude of the carrier wave. If the circuit were not fairly linear,
the modulated signal could not be recovered with reasonable fidelity. However, the
strength of the signal received will vary widely, depending on the power and
distance of the transmitter, and signal path attenuation. Overall, the AGC circuit
keeps the receiver's output level from fluctuating too much by detecting the overall
strength of the signal and automatically adjusting the gain of the receiver to
maintain the output level within an acceptable range.

3.2.3 Tapping into the Radio

https://en.wikipedia.org/wiki/Fidelity
https://en.wikipedia.org/wiki/Transmitter
https://en.wikipedia.org/wiki/Attenuation

17

To extract and inject audio signals into the radio it is required to solder cables into
the King 175B radio. This was done one of two ways: The first being soldering
directly into the back plate of the radio and the other was into the actual circuit
board of the radio. Depending on which signal needed to be extracted/injected it
could be either of the aforementioned methods.

Figure 3.4 Radio Backplate

Soldering into the back plate of the radio proved challenging due to how compact
the cables for power and microphone functions were. In the back plate of the radio
the following signals were injected/extracted. TX audio was soldered into the
microphone in line which corresponds to Pin ##. Power and ground are also
soldered into the radio back plate on pins ## and ## respectively. PTT is another
functionality of the interface board that is injected through the back plate through
pin ##.

Signals that are extracted from the radio are RX Audio, Carrier Detect and finally
AGC levels. These required some analyzation of the King 175B radio schematic
as they would be different from radio to radio. These signals required opening up
the radio and soldering into key points of the radio circuit as to not affect radio
functionality, but also provide a useful signal for the raspberry pi to analyze. The
carrier detect signal was extracted from the squelch capacitor. This is because the
squelch capacitor sits at a high voltage when closed and lowers when opened.
Therefore, connecting to a line to that capacitor would simply read the voltage and
leave the radio unaffected, like a multimeter would.

The RX audio signal was extracted from the volume potentiometer. This required
connecting to the input of the potentiometer, making sure not to connect to the
wiper or the output avoiding a changing value as the knob would be adjusted by
the user. Providing a uniform wave to the circuit and eventually the pi.

18

Figure 3.5 Where team tapped into radio for AGC and RX Audio

Lastly the AGC signal was extracted from a test point on the radio. Upon revising
the radio schematic there was a predetermined testing point for AGC values. The
testing point output a DC voltage corresponding to the adjustment required to
strengthen the input signal. This served as a perfect point to extract a value that
would represent signal strength.

All of the points chosen for the radio were thoroughly studied to make sure there
would be no damage to an already fragile and aged radio.

3.2.4 Language Options and Selection

3.2.4.1 MCU

For the main control unit, or MCU, there are a few options as far as what language
to choose. Since we are utilizing the Raspberry Pi 3 for the MCU the first priority,
was making sure that the programming language that we selected was directly
compatible with the Raspberry Pi and had libraries in which to access the multiple
General Purpose Input and Output pins, or GPIO pins. Having a library for the
Raspberry Pi’s GPIO pins allows us to not have to work from the ground up, and
strictly focus on how we are going to program the GPIO pins specifically. This
saves us a lot of time and effort that we don’t have to put into a lot of code that’s
only purpose would be to allow us to access the pins.

For this design we chose to go with Python as our programming language for the
MCU. Using python solves the initial requirement of having a default library for
interfacing with the Raspberry Pi’s GPIO pins through the RPI.GPIO library. This

19

allows for basic reading and writing to the pins without having to create those initial
functions ourselves.

Another reason we chose python as our main language was because the Analog
to Digital Converter, known as an ADC, that we are choosing has a python library
that allow for easier reading and writing directly from the chip without having to do
a lot of initial handshake messages and procedures to receive and send data.
Because reading from most particular ADC’s can be complicated, as they have
certain bit patterns in which are needed to configure and choose which of the
devices’ functions are being used, it is nice to have an extra bit of encapsulation in
which instead of building these bit patterns ourselves, we can simple call a read or
write method. This not only shortens the amount of code written by us but again
allows us to focus more on the actual implementation of our system rather than
having to deal with a lot of headache simply reading from the ADC. This library is
also open source so it is free to use and heavily supported by the community in
case we run into any issues.

Python was a good choice compared to other languages such as C as not only is
it inherently Object Oriented and allows for a more modular structure to our code.
The Object Oriented nature of Python allows us to create objects in which to
delegate the functions of reading and writing to certain components and sensors.
This also allows us to give control of certain components to certain objects and
much more easily debug our code. Python is also a scripting language which
makes it highly flexible in where and how it is actually run and implemented. This
means that no matter how we structure the system and integrate the various other
components (i.e. the HTTP server, DCHP server, etc.) the usage of our code can
be kept relatively independent. This allows us more freedom to change certain
modules and components in the system if we have to and not have to overhaul our
python scripts too much. In other languages like C, it can be much more difficult to
configure the code with all of these different components, as it has to be recompiled
and is only set to run a certain way. There is not a lot of flexibility there, which is
ideally what we find to be valuable in the structure of this system.

3.2.4.2 Web Server

As the main focus of this project will be focused around the backend of the system
capturing weather data, parsing that data, and formatting it in a way in which to be
broadcasted back out, we did not want to have to put a lot of unnecessary effort
into designing and implementing a huge relational database. Doing this would
require a lot of work just grabbing the required data and passing that data to and
from the front end of the system. This is where we started looking into using a web
framework that would allow for a Model View Controller, style of web design. Using
such a framework would allow us to simply pass the necessary information from
our models to our views and not have to make complicated PHP scripts to send
queries back and forth to the database. Not only will using such a framework make
our lives easier, but it will improve the performance of the system as data will be

20

populated into the views as they are created as opposed to loading the web page
and then recommunicating to the backend for the required data.

With these ideas in mind, we decided to go with the Django Web Framework for
the backend and the AngularJS Web Framework for the front end. These two
frameworks are MVC, or Model View Controller, frameworks. Django is created
and utilized in Python, html, CSS and JavaScript. This MVC framework works
perfectly without system since we will be using Python for our main MCU functions
and scripts to interface with the GPIO pins. Another major reason for using this
framework is that it abstracts a lot of the database behind models represented as
Python objects. This means that we can write our code in an object oriented
fashion and have the framework build the database tables for us behind the
scenes. This is helpful for us in a couple of ways, the first being that when
interacting with the database, we can treat each table record as an object that we
can interact with. This means we can change the fields of that record as if they
were general variables belonging to an object. Secondly this allows us to run
functions on the records in our database in which we can sort, search, filter and
build custom criteria in which to get, update and store records into the database
without having to write a line of SQL. This leads me to the main strength of this
framework, which is the fact that we can choose almost any database we want for
the backend and not have to change a line of code for our models. This again adds
to the flexibility of the system, as we can change out databases at any point if we
want something lighter, faster, smaller, or more robust.

Besides just having the database abstracted, we can import the schema of our
models directly into our Views and again use the database table records as if they
were objects and directly inject them into our html code. This means that in the
HTML code I can use the frameworks custom tags to preload the needed data and
utilize the database objects directly in the HTML instead of having to make a client,
formulate a SQL statement, make a call to the backend and wait for the data to
come back. The framework also makes use of custom tags to reduce the amount
of html we write. By utilizing certain template tags, we can repeat a block of html
for any number of database objects, which prevents us from having to write out
multiple blocks of the same html code and do extra processing on data received
from the database to populated each of those blocks separately.

The last major reason for Using Django lies in the fact that there are loads of useful
add on modules that will aid us in development. Two that we will be using for this
system include Django Celery, and Django REST Framework. Django Celery is a
job queue that will allow us to asynchronously queue, schedule, and run functions
we write as tasks. This will greatly improve how resources are managed on the
backend, which is immensely important since the Raspberry Pi is a powerful but
small machine as far as memory is concerned. Because we want the majority of
the resources on the Raspberry Pi to be handling the actual software operations
of the system, instead of primarily the web server, it is important to make the

21

webserver as light and fast as possible on the server side so we do not bog down
the system with http requests and web processing.

Django Rest Framework is a plug in that will allow us to quickly write and utilize a
RESTful API in which our frontend can “hook into.” REST stands for
“Representational State Transfer” and is used to create web endpoints that provide
database data to frontend web frameworks. This plugin to Django will allow us to
take advantage of Django’s ability to abstract away the database as objects, and
provide that information to our frontend as a JSON, or JavaScript Object Notation,
object that can be utilized in the JavaScript as if we had gotten it directly from
Django. This is important as it is the main and only point of communication between
Django and our frontend framework, AngularJS.

AngularJS is another MVC Framework whose strong suit lies in its ability to create
single page web applications. It might seem like overkill to have two different web
frameworks for the backend and frontend of the system, however this is extremely
important since we want to remove as much stress from the Web Server on the
Raspberry Pi as we can. The more time the Raspberry Pi is handling web
requests; the more time it is not properly managing the system resources that are
essential to the system. This is where AngularJS comes in; AngularJS uses
JavaScript to break up a single page and separate that into multiple views. It does
this by grabbing data from a RESTful API and storing that information as models.
It then uses these models in conjunction with its views to display the requested
information on the screen. The real selling point here is in the fact that ALL views
are loaded at once, but the framework only shows the selected view and only pulls
in the data it needs, when it needs it. This allows us to consolidate all the views
from the Django end into one view on the AngularJS end and have the client’s
browser handle which view and information is being requested. In this architecture,
instead of requesting a new view from the Raspberry Pi every time and waiting on
the response, all of the views are already loaded at once on the client machine
and the browser simply switches what content is being display and what content
is hidden. This drastically reduces the traffic and computation on the Raspberry Pi
and pushes all of the responsibility to the client’s browser (usually located on a
machine more suited to handle the load).

Database

Even though the database will be mostly abstracted away from the system by the
Django Web Framework, it is still an important part of the system that must be
carefully chosen. Just looking at the line of Open Source SQL products there are
many options ranging from very advanced and feature rich to simple and
lightweight options. For this project we will not nearly need as many features as
PostgreSQL provides as the models for this project will not be overly complex. Also
since there is not really any form of user related security, it is a bit overkill to utilize
a lot of the security features that come with a lot of SQL databases. Because this
system can be classified as “embedded” and security are not as important in this

22

system, the focus on what database we needed focused more on speed, memory
load, portability. These criteria made SQLite the perfect option to use for this
system. SQLite is stored in a single file format as opposed to the traditional
database design. This allows for incredible portability, as simply backing up this
file at certain stages will give the system administrator a lot of functionality as far
as rolling back the database if it were to get corrupted. Also the fact that the file
can be copied to a completely different system and, as long as it is configured
correctly, will be a complete copy of the database. Secondly, as the name implies,
this style of database is extremely light weight and does not take up nearly as
much space as traditional database. Its small size allows for the database to be
very fast as well, making this database the perfect selection for this system.

If there are any fallbacks to mention here, we would probably have to say that this
particular database does not include security and can only allow one “write” action
to happen at one time. As discussed above, the security features of the database
are not necessary for this project and this drawback can be ignored. As far as only
being able to write one entry at a time, this is not so much of a problem for us
considering that writing to the database is only done under certain circumstances
in which data is being read from the various components of the system. Here we
do not have to really worry about multiple entries being written at the same time
since each request sent to the system can only be processed one at a time
anyway. This problem will only be an issue if multiple users are trying to change
the configurations settings at the same time over the User Interface. This again is
not a major problem since the Raspberry Pi will only be on a local, very small
network and not normally accessible to the outside world. This in and of itself is a
form of security measure due to the fact that not many people will be changing the
configuration settings, and have to be on the Raspberry Pi’s local network run by
the Raspberry Pi’s DCHP server to even access the page.

Job Queue

Lastly, we need to talk about the Job Queue software that the Django Celery
Module (discussed above) will be utilizing. There were two major options as far as
which job queue to use, RabbitMQ, and Redis. Both of these options are inherently
compatible with the Django Celery plug in and are both recommended options by
default. RabbitMQ is a very fast, lightweight, and persistent job queue that would
be the better option as far as the most lightweight option. However, in this case we
decided to go with the more robust Redis job queue for a couple of reasons. Redis
has a few more options as far as configurability in which we have the potential to
have multiple jobs ques clustered together if we chose. We do not foresee the
issue of overflowing the one job queue to be a problem, however it is nice to know
we have the option to play around with different configurations to see what gives
us the best performance. The main reason for choosing Redis was in the fact that
Redis can also serve as a Key-Value pair dictionary that is store in the systems
persistent memory. This can come in handy since we do not necessarily want to
implement the Python jobs to read and write to the GPIO pins to be governed by

23

the Web server and the Django framework completely as that doesn’t really make
sense from a structural standpoint. The Redis Key-Value store would allow for
standalone python services to fetch the various sensor data from the external
components and then store them to the Redis Key Value Dictionary. Then the
tasks governed by the Django Celery plug in can asynchronously grab these
values from the stores they were saved in and save them to the database (that is
governed by the Django Web Framework). This makes more sense structurally
and allows us to keep a lot of the functionality separate and modular. This will
make testing and debugging the system much faster and easier to do. While
RabbitMQ may be lighter and faster on the system, the extra bit of functionality we
get from Redis will be more useful to us in linking all of the different parts of the
system together.

3.2.5 Text-to-Voice Software

One of the most important pieces to this system is the Text to Speech software.
This software will be what takes all of the weather and transmission data that is
taken in from all of the sensors and creates the voiced broadcast that will be played
over the radio channel and heard by the pilots. Needless to say that there are a
few very important specifications that the text to speech software must follow. First
and foremost, the voice that is created by the text to speech software chosen must
be indisputably clear and concise. Even if a certain Text to Speech software
creates an understandable output over laptop speakers, it must be understood that
this signal will be running through various amplification and compression circuits
and will eventually be broadcasted over the radio channel as radio waves.
Throughout this process there can be a lot of interference and the signal may be
heavily influenced before it is even heard by the pilot. This is why it is so important
to have a clear and clean output. Secondly, the output of the Text to Speech
software must be configurable. This means that the language, pronunciation, and
speed of the output signal must be configurable. A clear output is still no good if
the output is too fast to hear or mispronounced. Also some voice settings may be
more appealing to other users and improves the user experience of the system.
The next requirement for the Text to Speech software is that the output must be
easily stored in a file. This is so that the history of the system can be kept track of
if the user wants to see previous broadcasts. Lastly, and arguably most
importantly, whatever Text to Speech solution we choose must be able to be used
without an internet connection. This system will be placed in an environment where
a solid internet connection may not be reliable. In that case we cannot have a major
part of the system be reliant on something that may not be provided.

Looking at the above requirements, we came across a few good options. IVONA
Text to Speech was easily the clearest can best voice out of all of the Text to
Speech software we looked at. It was highly configurable and had many
configurations that could be set including nationality, language, gender, and
pronunciation. We would have easily gone with this solution, except for the fact
that it is a service provided over the internet, the output could not be saved to a file
by default, and cost a good bit of money a month for the service. Secondly we

24

looked at Festival TTS. This particular solution is free, open source, is directly
compatible to Linux, and run directly on the Linux system. Festival was by far the
most configurable system we saw with tons of different configurable voices. What
I liked most about this solution is that other language packs found or created by
the community could be imported into the system, as well as tested on the fly. The
downside to Festival came in the form of its clarity and storability. While its
configurability is unparalleled, it is not the clearest solution and difficult to work
with. It is the trickiest solution to set up and the lack of clarity knocks it out as a
viable option for this system. Lastly, there was PICO TTS. PICO is a stripped down,
barebones version of the Text to Speech project used in googles android products.
While very simplistic, this solution is open source, free, and can be run directly on
any Linux system (including the Raspberry Pi). While the initial set up can be a
little unorthodox, it is only a matter of downloading, unpacking and “make installing”
the correct package found online. Anyone familiar with the Linux operating system
will not have too much trouble here. We ultimately chose this option because the
voice output is clear and can be store directly as a wav file. While there is not a ton
of configuration as far as the voice there is enough for our purposes here. The
default gender of the voice is female and there really isn’t anyway to change the
gender. However, there are a good amount of different languages available and
the pronunciation and pronunciation speed can be changed by editing the text you
send to the engine. While not the most flexible, the PICO TTS engine is clear, free,
and can be run on the machine natively without an internet connection, which
covers the majority of the requirements necessary for our system.

3.3 Interfaces

This sections discusses how the components are connected in the system block
diagram and the communication between them. Also provided is an overview of
the data that will go between the two components and what that data will be used
for in the context of the entire system as a finished product.

3.3.1 To Radio

These connections are ones that go from the interface board to the radio.

3.3.1.1 TX Audio

The transmit audio will be an analog output coming from the 3.5mm jack of the
Raspberry Pi 3. This signal will be run through the interface module. This audio will
be processed so it can be transmitted by the KX-170B Radio without clipping.

3.3.1.2 PTT

This PTT block will put the KX-170B radio into transmit mode prior to audio being
communicated. The purpose of this signal is to simulate the action that is pushing
the mic button to talk over the radio. In this circuit there will be a testing switch that
will allow for input simulation in system testing.

25

3.3.2 From Radio

Like the signals being used to be able to transmit through the KX-170B Radio,
there is also a need to analyze signals coming from it. These signals will go through
the interface board and allow for the Raspberry Pi 3 to analyze what is being
needed by the pilot at the other end, as well as allow the Raspberry Pi to receive
the actual audio from the pilot.

3.3.2.1 RX Audio

As previously mentioned the Raspberry Pi will need to be able to receive the audio
being transmitted by the pilot. This RX audio signal will be picked up from the top
of the volume potentiometer and run through the interface board. This is to prevent
the volume setting on the actual KX-170B radio to effect the RX audio signal being
transmitted to the interface board. To interface all analog signals with the
Raspberry Pi 3’s the signals need to be converted from analog to digital. The
important detail on this conversion is the Raspberry Pi 3’s SPI BUS requirement
to have the output signal’s logical 1 to have a 3.3V maximum input to be able to
properly communicate with the Raspberry Pi 3. This means that some degree of
voltage adjustment will have to be done to the output for a high resolution, but
relatively low voltage analog to digital conversion.

3.3.2.2 Carrier Detect

The Carrier Detect in our system was identified from the main radio. The carrier
detect levels were obtained by connecting the radio, at the squelch circuit output,
to the oscilloscope and examining the output voltage when there is a RX signal
detect present and when there is RX signal detect present.

Carrier Detected 7.83 Volts

No Carrier Detected 4.38 Volts

3.3.2.3 Automatic Gain Control

The AGC will be measured from the radio during a transmit radio check. A
conversion table will be used to tell the microprocessor what the power level is
during the transmission.

3.3.3 From Microcomputer

For output the Raspberry Pi 3’s interface is more forgiving. The manipulations of
the signals are more for convenience and practicality rather than must haves or
else the system will be rendered useless. The two signals that the Raspberry Pi 3
will output to the interface are the two key communication signals in half-duplex
communication. The PTT and the TX Audio signals. These are then received by
the KX-170B Radio and broadcasted to the user on the other end of the
communication channel.

26

3.3.3.1 PTT

The PTT line will be activated from one of the Raspberry Pi 3’s GPIO pins to a
circuit that will pull the PTT line of the KX-170B Radio to ground. This will engage
the transmit mode on the KX-170B radio as indicated by the Raspberry PI 3’s MCU.

3.3.3.2 TX Audio

The transmit audio by the Raspberry Pi 3 will be through the 3.5mm jack already
built in the system and pass through the interface board. This audio signal will
contain what the pilot will hear on the line. The Raspberry Pi 3 will transmit the
received audio from the RX audio signal as well as a message about the RX audio
signal’s strength coming into the system, the wind information, and wind direction.
This audio will be pushed through some signal conditioning and compression to
result in a clear signal for the radio to transmit to the user.

Audio Limiting

There are two kinds of AC signal compression that were considered for this
application. There is the limiting and clipping. The consideration for clipping stems
from the idea that if a voltage were high enough it could end up damaging the radio
beyond repairs. Voltage clipping is done to ensure that an AC voltage range does
not exceed a pre-set maximum, and if desired minimum as well. This is mostly
done using diodes which activate once the threshold voltage is reached and then
redirect all excess voltage to ground or somewhere else in the circuit. In the end
what happens is the signal is very distorted but it stays within the preset range
regardless of the voltage pushed it, as long as it’s nothing excessive. Typical
clipped signals look like Figure 3.5.

Figure 3.6 Original vs. Clipped Signal

27

As it can be clearly seen the original signal has been distorted losing some of the
fidelity but if a system were to require a very specific maximum input this would
ensure that maximum is not reached.

On the other hand, there is limiting, soft clipping, which is meets the system
requirements in a more suiting manner. This is because soft limiting is similar to a
clipper, but it reduces signal amplitude instead of re-routing it. Keeping signal
fidelity, but removing the voltage ‘loudness’ from it. This is done by using an active
circuit with an operational amplifier element. Using something like a FET and
diodes to create variable gain that is dictated by the amplitude of the input. This
created a relationship between the input signal and the gain of the system. Once
the input signal reaches a certain threshold the gain, along with some voltage
offset input will lower the amplitude of the system to keep the signal within the
desired range. Figure 3.6 demonstrated how voltage limiter will have it output look
once input surpassed the desired threshold compared to a hard limiter and the
original input signal.

Figure 3.7 Hard Limiter vs. Soft Limiter Output

As demonstrated by the figure soft limiting keeps better signal fidelity which for the
purpose of playback better suits the unmanned field base operator being designed.
This is from the much slower attack and release times from the soft limiter. This
gives the signals the soft edges instead of the hard cutoff at the threshold voltage.

3.3.4 To Microcomputer

These connections will go from the interface board to the microcomputer and will
allow the microcomputer to analyze what the user is asking for. Most of these
inputs come from the SPI bus that can be read and used by the microcomputer.

3.3.4.1 SPI Bus

The serial peripheral interface bus is a synchronous serial communication interface
often used for short distance communication. In our system, the AGC voltage and

28

wind direction are sent to the microcontroller using the SPI bus. The bus can
operate with a single master device and with one or more slave devices. This
means that multiple inputs can be connected to the SPI and they will be separated
and transmit independently.

AGC to SPI Bus

After receiving the AGC voltage, conditioning it through the TL084 Op-Amp, and
converting to a digital signal through the ADC, the AGC is sent to microprocessor
through the SPI bus. The AGC voltage is one (1) of three (3) signals sent via SPI.

Figure 3.8 AGC Data Flow

Wind Direction to SPI Bus

The process that the wind direction follows is similar to the AGC voltage. After
receiving the wind direction, conditioning it through the TL084 op-amp, and
converting it to a digital signal through the ADC, the wind direction is sent to the
microprocessor through the SPI bus. This is the second signal of three (3) sent to
the raspberry pi via the SPI bus.

Figure 3.9 Wind Direction Data Flow

3.3.4.2 Carrier Detect

After the conditioning of the carrier detect (when present), the logical output of 3.3V
continues to the microcontroller. The microcontroller receives this at one of the its
general purpose input/output (GPIO) pins. It is important to note that the
comparator output is 3.3V, which is the only input the Raspberry Pi can take. This
continues to elaborate on why is important to have a logical output from the
comparator that indicates the presence of a carrier detect regardless of its
amplitude. In this case, 5V to 8V.

3.3.5 From Anemometer

These connections are coming into the interface board from the anemometer to be
directly routed to the microcomputer.

29

3.3.5.1 Wind Speed

The anemometer provides us with the wind speed, after condition of this signal,
the output of the PNP transistor continues to the microcontroller. This output, if
wind is present, will be 3.3V. This value will be connected to a second GPIO pin
on the raspberry pi. The important notes when measuring this value are the
amount of times and how often this value is sent to the microcontroller. This will
determine the value in miles per hour (MPH).

3.3.5.2 Wind Direction

The second important value that the anemometer provides us with is the direction
of the wind. The anemometer uses a potentiometer to determine direction. The
potentiometer can take up to 5V with a current limit of 20mA.

3.4 Power

It’s important to record the power consumption of the different devices used in the
system. This provides us with information necessary to choose the right power
supply. It’s important to power the devices with the correct needed voltage and
current for best functionality and stability.

3.4.1 Voltage Source

The power source used for the AirBud is a 13.8V 5 Amp power supply

3.4.2 DC to DC Converters

There are several DC to DC voltage converters in our system. These are used to
step down the 13.8V source to the desired outputs. As seen in table XY, the
components require different voltages; 3.3V, 5V, 12V.

3.4.2.1 3.3V Regulators

The 3.3V source is used for 2 different things. The first one, as previously
mentioned, is for the carrier detect. This 3.3V regulator provides the comparator
with the necessary output when the comparator outputs a logical 1. When there is
a carrier detect present, the output will be 3.3V; otherwise, 0V.

30

Figure 3.10 3.3V Regulator

3.4.2.2 5V Regulators

A second voltage regulator used in our system is for 5V. This 5V are used in the
anemometer when measuring the wind direction and also to power the analog to
digital converter MCP3008. The ADC has the option of also being powered with
3.3V but at 5V we are able to obtain a higher resolution when converting. The
regulator has connected at its input a XY pF decoupling capacitor. This capacitor
adds fast charge storage, commonly used when connected to a power supply
which are relatively slow. The second pin of the regulator is connected directly to
ground and then the third pin, output is connected to a XY capacitor that is also
connected to ground. This second capacitor serves the same purpose of adding
fast charge storage. Below is the schematic for the 5V regulator setup.

31

Figure 3.11 5V Regulator

3.4.2.3 12V Regulators

The third voltage regulator used in our system is for 12V. We obtain 13.8V from
the source and convert it to 12V. This 12V are used to power the op-amps. The
regulator has connected at its input a XY pF decoupling capacitor. This capacitor
adds fast charge storage, commonly used when connected to a power supply
which are relatively slow. The second pin of the regulator is connected directly to
ground and then the third pin, output is connected to a XY capacitor that is also
connected to ground. This second capacitor serves the same purpose of adding
fast charge storage. Below is the schematic for the 12V regulator setup.

Figure 3.12 12V Regulator

32

3.4.2.4 -12V Voltage Inverter

The need for a 12V negative power supply comes from the desired soft limiter
being used for the interface board. This soft limiter will be applied for the TX Audio.
As Figure 4.2.5 C shows there is need for a -12V DC power supply. The desired
part for this implementation is the TPS63700 DC-DC Inverter.

Figure 3.13 TPS 63700 Pin Layout

This is a TI component who’s input and output voltage ranges match the system
requirements. Though it could be supplied with a 3.3V input from one of the
regulators it is preferable to supply it through the 5V regulator. This is because it
provides the highest efficiency in the output signal, and supply an output of -12V
for the interface board.

Figure 3.14 Efficiency at 12V output

The layout for the TPS63700 DC-to-DC inverter requires different components
depending on the desired voltage output. Since the interface board requires the -
12V output the following schematic is appropriate:

33

Figure 3.15 -12V Supply TI Reference Schematic

34

4 Interface Board Design

Figure 4.1 Interface Board Block Diagram

The interface board will interpret all of the incoming and outgoing signals between
the radio and the Microprocessor. This will be handling the TX and RX signal
conditioning, conversion and amplification between the two systems. This will also
push the PTT signal into the radio for whenever a transmission is going to be sent
out to the pilot requesting information. Inputs will be received from directly tapping
into the radio at specific solder points or through the back pins of the KX-170B
VHF Aircraft radio. In this the communication between the UNICOM programmable
HUB, the Raspberry Pi 3, and the broadcasting hardware, the KX-170B VHF
Aircraft radio

35

4.1 Power

Due to the Florida heat the operating temperature of components will be assumed
to be at 30ºC for power consumption calculations unless otherwise stated.

Component Part Number Power Consumption
at 30ºC

Quantity

Operational Amplifier TL084 490 mW 1

Operational Amplifier LM234 800 mW 3

PNP Transistor 2N4403 600 mW 2

NPN Transistor 2N4401 625 mW 1

FET 2N3820 360 mW 1

NPN Transistor BC546 625 mW 1

4.2 SPI Bus

After the AGC, RX Audio, and Wind direction signals have been converted to digital
signals this SPI Bus will be used to deliver information to the Raspberry Pi 3. This
bus will carry information in the form of a 3.3V maximum voltage digital signal.

4.3 PTT Circuit

Figure 4.2 PTT Block Diagram

In order to communicate to the Raspberry Pi 3’s intent to transmit a signal needs
to be pushed so the KX-170B Radio in order to get it in a ‘Ready to Transmit’ state.
This signal is going to be generated by the Raspberry Pi 3’s GPIO pin and a DC
power source for system testing. This will require two inputs: one for system use
and one for system trouble shooting. The input from the Raspberry Pi 3’s GPIO
pin will be for practical use, thus the DC voltage source will be used for testing.
During testing the GPIO pin will act as a ground and part of the current will be sent
through there and the rest will be sent to the PTT input of the radio. This will allow
the user to check if the circuit is bad or if there has been a programming error in
the Raspberry Pi 3 system. The intent of this circuit is to simulate the PTT signal
generated by the microphone interface in the radio. The idea is to act grounded
when not transmitting and to input a current when ready to transmit in order to
open the mic channel and set the KX-170B in a ready to transmit mode.

36

4.3.1 PTT Circuit Design

Figure 4.3 PTT Circuit

The Push-To-Talk (PTT) circuit is going to be responsible for setting the KX-170B
radio into transmit mode. This is done by using the GPIO pin in the Raspberry Pi
3’s pins as a 3.3V source. This voltage being pushed through the NPN transistor,
Q1, pulls the PTT relay day to ground. The action of pulling the relay to ground
results in the collapse of the magnetic field around the inductor. This will send a
large voltage back from the PTT relay to the Q1 transistor. This is where the
reverse biased diode will re-route that voltage to ground, thus not burning the
transistor. When it comes to testing the system switch, S1, will have the 3.3V
source from the interface board act as the Raspberry Pi 3’s GPIO input. This will
simulate the act of readying for transmit on the KX-170B. Though the design shows
the GPIOPIN power source as a 3.3V power source it must be noted that this is a
pin from the Raspberry Pi 3’s interface. This will act as a ground when being tested
as the system will be inactive, or turned off, when being tested. The circuit takes
full advantage of the Raspberry Pi 3’s architecture to reduce the amount of
components required to achieve the same function. When using the Raspberry Pi
3’s GPIO as a ground its current limits is around 16mA maximum current before
burning the microprocessor. Therefore, the current running from the interface
board power supply is split using resistors R1 and R2 above. Thus ensuring that
the Raspberry Pi 3 operates as a ground with proper current flow.

4.3.2 PTT Circuit Design Final Changes

The final design for the PTT circuit remained the same as it originally provided the
intended purpose. One designation that was determined and differed from the
original was the resistor values. Originally intended to be 10k for both R44 and
R45 it was later changed to 1k for both. This was done to allow for a larger base

37

current to flow into the transistor and be able to set it into saturation mode.
Otherwise it was too low a current to ground the 13.8V sitting on the PTT line
coming from the radio.

4.4 Carrier Detect

The consolidation between the Radio and Interface Board serves as the bridge to
be able to condition the carrier detect and identify when there will be transmission.
Since we only have two (2) levels for identification, a comparator is being used to
compare and determine which level, that indicates transmission or no
transmission, is being received.

4.4.1 Comparator Circuit

The comparator being used is the LM393 Dual Differential Comparator. The
purpose of this device is to compare two (2) voltage values, and output a digital
signal indicating which of the two is larger to the main control unit through a GPIO.
The image below references to the pinout of the built circuit.

Figure 4.4 LM393

The differential comparator consists of a high gain differential amplifier. These
devices are commonly used in systems that measure and digitize analog signals
such as analog to digital converters, as well as relaxation oscillators.

In our application we compare the received signal, carrier detect present or carrier
detect not present, with a reference voltage.

38

Figure 4.5 Comparator Circuit

The voltage measured for RX audio signal (CD) being present was 8V+; meaning,
when compared to the reference voltage, 6.5V, the comparator will output a logical
1, allowing the 3.3V flow through the pull-up resistor becoming the output to the
next stage of the circuit. Next stage of the circuit being to a GPIO pin of the
microcontroller. The voltage measured for RX audio signal (CD) not present was
5V+; meaning, when compared to the reference voltage, 6.5V, the comparator will
output a logical 0, this output will not allow the 3.3V become the output to the GPIO
pin. See the image below to follow logical output of the comparator LM393.

𝑉0 = {
0, 𝑉+ < 𝑉 −
1, 𝑉− ≥ 𝑉 −

The 6.5V for reference are achieved through a voltage divider circuit. The input
(Vin-) is 12V which is then divided through both resistors of 10k ohms and 8.5k
ohms. The reference is then then compared to the ground at the 10k ohms resistor.
This will create a constant output of 6.5V since the 12V is being provided by a
voltage regulator.

A feature added the circuit was tested and built on a protoboard and printed circuit
board is the ability to simulate the input to the comparator. This allows the user to
be able to debug any issues on the circuit and bypass the use of the VHF radio for
testing purposes. The image below shows the headers added to the circuit for two
different modes. Mode 1 connect to the radio and mode 2 “CD test” which stands
for carrier detect test.

39

Figure 4.6

A second feature added to the circuit is an LED at the output signal. Several circuits
in the overall design of the interface include LEDs. This allows the user to be see
the circuits that are properly working and the ones that aren’t in the case that the
LED is off. For the comparator, since the output is 3.3V, the current across the
LED was used to measure the desired resistance. The calculated value for the
resistor was 150 ohms.

4.4.2 Operational Amplifiers

The use of operational amplifiers is necessary for the many active circuits being
used in this interface board. Since the interface board will be handling two analog
signals, TX and RX audio. In order to properly condition those signals into ideal
signals for the Raspberry Pi 3 they must go through some active circuits. Initially
the interface board was planned to not include any negative power supplies and
the TL324 would be the ideal operational amplifier to handle the signal processing.
Though as the design was further looked into and more complex circuits were
deemed fit for the practicality of this system a need for a negative power supply
was required. This meant that the LM324 could be replaced for a TL084 since dual
power supplies would be possible. This decision to switch would have required to
a redesign of all circuits. What was decided upon was to simply use both circuits.
Since the LM234 would simply use the positive 12V supply and the TL084 would
use both the positive 12V and the negative 12V supplies.

40

Figure 4.7 LM124W Pinout

Figure 4.8 TL084 Pinout

It can be noted that both the TL084 and the LM324 have the same pin layout with
the only difference being at the negative input, pin 11. Where the TL084 takes in
a negative supply the LM234 will have that pin to ground. This makes them ideal
for breadboarding. Dues to ease of access breadboarding tests will be done will
the TL084 operational amplifier, since their function is interchangeable and the
circuit would remain unchanged once they are swapped out.

One observation that was determine critical during testing was the designation of
a DC offset on the operational amplifier circuits. Because it was determined to used
single supply op amps to reduce powers supplies on the interface board, it was
now required to apply an offset to any audio modulation circuit. This was
represented in both the TX audio and RX audio final circuitry. Coincidentally a
polarized capacitor was added to remove bias accordingly and output a final
unbiased audio signal to the radio/raspberry pi.

41

4.5 TX Audio Circuit

Figure 4.9 TX Audio Schematic Section 1

Figure 4.10 TX Audio Schematic Section 2

42

The KX-170B VHF Radio usually is used of a carbon microphone. The purpose of
this circuit is to inject the transmit audio coming into the radio from the Raspberry
Pi 3’s 3.5mm audio jack. The transmitted audio will be required to be conditioned
and compressed. The conditioning and compression of the transmission audio
signal is to prevent over modulation when being transmitted by the KX-170B Radio,
as well as to prevent the protection mechanism in the radio to trigger and prevent
audio from being transmitted.

Figure 4.11 TX Audio Circuit Block Diagram

43

4.5.1 Audio Compression Circuit

Figure 4.12 TX Audio Compressor Schematic

The use of audio compression is to normalize the varying amplitude of the outgoing
transmission signal, through the interface board. This will protect the transmitted
audio signals from over modulation and distortion, but keep some degree of fidelity
when transmitting. The reason being, when the Raspberry Pi 3 does the RX audio
retransmission to the pilot, the pilot will then hear his transmitted audio the same
way the Raspberry Pi 3 received it. To do this the circuit will use a combination of

44

diodes, one p-channel JFET, two NPN transistors, one PNP transistor and four
operational amplifiers. The TX audio signal will be pushed through the operational
amplifier with an almost unit gain, due to resistor errors. This TXCOMPRESSED
output will then go through a full-wave detector circuit where it will activate upon
all large increases in amplitude of the circuit. When the TXCOMPRESSED output
is large enough and trips the full-wave detector that in turn will activate the collector
on transistor T1. This then gets mirrored by the T2 and T3 circuit which then
pushes it onto the negative input of IC7B, the fourth operation amplifier in the
circuit, which pulls a negative voltage through the JFET, and thus lowering the
input amplitude to the circuit.

Figure 4.13 FET Audio Peak Limiter (Georgia Tech Permission Pending Unused in Final Revision)

The circuit design being used for the TX Audio Compressor is a peak voltage limiter
designed by Marshall Leach, a professor at the Georgia Institute of Technology.
The reason this circuit is going to be used to audio compression is that the attack
time for the limiter is fast enough for audio transmission without any noticeable
delay. The parameters for the voltage activation for the full-wave detector is
determined by the resistors R1 and R2 in tandem with the pinch-off voltage of the
FET J1. With the FET pinch off voltage being denoted as VP and its saturation
current as IDSS the formula for determining appropriate values for R1 and R3 are
(CITATION):

45

Where the parameters of the pinch-off voltage and saturation current are
depended on the individual FET and should not be considered universal. This is
because different FET with different values for the latter will result in different
optimal values for R1, R2 and R3 respectively. The circuit activation is intended to
be around one tenth of the pinch-off voltage. The 2N5450 p-channel JFET is
around 3V making the 300mV TX Audio optimal for conditioning since anything
above 300mV would get reduced accordingly. Ideally for this kind of design the
values for R1, R2 and R3 would be chosen such that the limiter slope would be
around 20dbm. Though it is not large for audio conditioning and due to the range
of voltage the TX Audio will be ranging in that slope is more than enough to limit
the incoming audio properly. Adjusting for larger values would require larger
resistors which in turn would increase the noise due to thermal noise from the
larger resistors. To ensure the proper offset is fed back into the input through the
FET resistors R16 and R14 must meet the following condition:

The gate voltage coming into the FET must be around the same as the pinch off
voltage, thus values for R15 and P1 must be chosen such that it can range not too
far off from 3V (an average pinch off voltage for the 2N5460). Having the negative
voltage supply as reference for that voltage divider:

Where V+ is supplied by the 12V power supply for our implementation thus it must
also be reflected in the other component values for the circuit, but it does not affect
the efficiency as the circuit will only require voltage ranges no larger than 1V. Lastly
the attack time on the limiter has its properties defined by a combination of resistors
R10, R9, R13, R1 and R2, capacitor C2 and the properties of the FET.

46

4.5.2 Audio Conditioning Circuit

Figure 4.14 TX Audio Low Pass Filter Schematic

The TX Compressed Audio will be run through a 2 stage Butterworth low pass
filter. This active filter uses its capacitors, C1 and C2, as well as its’ resistors, R1,
R2, R3, and R4, in order to filter any signals with a frequency higher than 7.2kHz.
This is done as a final measure to ensure fidelity in the signal being transmitted,
thus blocking out any high frequency noise that may have leaked into the signal
prior to transmission

4.5.3 TX Audio Conditioning Circuit (Final Revision)

Figure 4.15 TX Audio Conditioning Circuit (Final Revision)

47

Though the initial iteration of the TX compressor served it purpose it was
determined too large for the compact idea behind this system. The need of three
transistors, four operational amplifiers and one FET was too many components
that could fail should there be a short or complications. Under the guidance of
sponsor Michael Young, a new circuit was designed to undertake the compression
and filtering of the TX Audio.

Initially designed with two 10k potentiometers in the input and output to adjust the
audio levels prior to entering the radio to ensure compression in high levels but an
output bellow 2.1V. This is key because if the audio input to the radio was too high
the radio would automatically process and reject the injected signal. Therefore, it
was critical to remain under the 2.1V peak range. The key aspect of this design is
the half-wave rectifier in the first feedback loop of the two operational amplifier
system. The output signal has its negative range removed through a reverse bias
diode D5. The positive band then turns on the positive diode D4, and this diode
switches on and off as the positive band pulses through the half wave rectifier. This
turns on the N-MOSFET creating a variable resistance that finally compressed the
output signal. Creating that protective barrier between the Raspberry Pi 3 Codec
and the VHF Radio. A secondary aspect is the low pas filter caused between R39
and C11 that will filter any high frequency noise that may have leaked into the
audio.

A secondary but key aspect of the circuit design is the unity buffer amplifier by the
output. This is due to the load on the radio discharging C5 faster than the intended
RC time constant. To prevent this, it was decided that using the second operational
amplifier that the LM358 provided would be ideal. The simulated infant resistance
of the amplifier would simulate a separate the circuit from the radio. Preventing the
radio load to affect the audio compression when transmitting.

Finally, when the potentiometers were replaced with resistors it was designed to
this specific radio but voltage dividers were kept in line in case this PCB would
outlive the aged King 175B radio. Such that it could be adjusted to any new radio
that is adapted to this system.

48

4.6 RX Audio Circuit

Figure 4.16 RX Audio Schematic

Figure 4.17 RX Audio Circuit Block Diagram

The received audio signal is what is going to allow the Raspberry Pi 3 to later re
transmit the signal in a later stage of the equipment check function. While the AGC
will provide the Raspberry Pi 3 the received signal strength the RX audio will
provide the voice recording that will be played back to the pilot during the
equipment check. This will let the pilot know that his microphone is working and
the signal strength the radio is receiving. The received audio signal will only need
to be amplified enough so that the analog to digital converter can properly convert
it into the bit stream that will pass through the SPI bus and into the Raspberry Pi
3. The received audio signal will be amplified to a maximum of 2.92V. The RX
Audio signal will be offset by 3V in order to provide an even 2 range for both the
positive and negative end of the audio signals. This is to avoid reaching the 1V
input voltage to ensure accurate readings in the analog to digital converter. This
will go through the analog to digital converter that will have a 5V high resolution
digital output. This output will then be reduced to 3.3V through some voltage
dividers. The Raspberry Pi 3’s programming will then interpret that into the

49

appropriate digital bit stream for play back and message synthetization during the
transmission stage of communications.

4.6.1 Audio Conditioning Circuit

Figure 4.18 RX Audio Conditioning Schematic

The analog conditioning interface circuit will condition the RX audio such that it no
longer has a ± voltage amplitude but will instead be a completely positive voltage
AC signal. This signal will be amplified and filtered so no more noise is going
through it before making into the analog to digital converter. This circuit has no
gain as the final filter will provide the gain and dynamic range for the analog to
digital converter. In Figure 4.2.6 B the polarized capacitor is there to remove all dc
biasing from the received audio. This will provide the interface board with an
unbiased, analog audio signal that will be conditioned by the circuit. Using the 5V
power supply from the interface board a positive bias is given to the RX audio
signal through the operational amplifier IC9A. Though because a 5V bias is too
much for the analog to digital converter it is then divided using resistors R16 and
R15. Using values of 10k and 15k respectively the resistors split the interface 5V
input into a 3V reference voltage that will go into the negative op amp input. The
signal is not only offset but also amplified by the operational amplifier. Though
because the signal cannot exceed 5V once being pushed into the analog to digital
converter it is only amplified by a factor of 11.

50

4.6.2 Low Pass Filter Circuit

Figure 4.19 RX Audio Low Pass Filter Schematic

The 2 stage Butterworth low pass filter will be the second stage of the Rx Audio
circuit. This will filter out any high frequency noise in the signal. Any frequency
above 7kHz will be filtered at a rate of -40dB/dec. This will ensure that the audio
going into the Analog to Digital converter is only the RX audio and no other noise
that could be interfering with the signal. This circuit does have a considerable gain
on it already, but since the filter has such a small gain it is considered negligible.

4.6.3 RX Audio Circuit Final Revision

Figure 4.20 RX Audio Circuit Final Revision

During testing certain aspect of the circuit were determined too space consuming
and were changed. Once main change was the removal of the low pass filter and
a first order filter was added to the conditioner. R27 and C15 filter out high
frequency noise that may have been injected in the audio through the radio
internals. R20 and R22 provide a 2.5V DC offset that is used to power both the
LED in the transistor and then the signal is voltage divided to reduce the amplitude

51

to a 3.3V peak to peak. This is done to protect the audio coded going to the Pi.
The final output of the circuit is a cleaned, amplified version of the audio received
by the radio. Allowing the pilot to properly hear his comm-check and assess the
situation accordingly.

The reduction in size also provides an easier time when swapping out any burnt
components or compromised components should anything in the system fail.
Allowing the user an easier more streamlined way to troubleshoot the circuit.
The DC offset of the circuit also provides the transistor T3 with enough base
current to saturate it. This sends the LED2 into an on state that is weakly on.
Allowing the increasing amplitude of the audio to make it flicker and create a visual
representation of the audio being output by the circuit

4.7 Automatic Gain Control Voltage

The AGC Buffer Amplifier in our system is used to maintain a constant amplitude
level for the received signal (sound). Like the comparator, the bridge between the
AGC and the interface board, allows us to condition the signal before using it. The
measurement of this signal is one of the crucial functionalities of our system. After
the AGC is measured, conditioned and transferred to the raspberry pi, it will be
communicated to the user allowing him or her to know if the signal is weak or
strong per the distance. Knowing this bring the user an idea of how safe it is to use
the radio or take a second to debug any issues.

4.7.1 Conditioner Circuit

As previously discussed, the input can have a wide range and it’s necessary to
maintain the output constant. Filtration and amplification were achieved using an
operation amplifier with multiple stages. The chosen operational amplifier was the
TL084. The AGC buffer amplifier is composed of a low pass filter and a second
stage amplifier that splits the gain of the first stage. The Op Amp will produce an
output potential larger than the potential difference between its input terminals. The
first stage, low pass filter, will pass signals with a frequency lower than a 7kHz,
cutoff frequency, and attenuate signals with frequency higher than the cutoff. The
signal will then fall under the second stage of the circuit, where its previous gain of
half (.5) will be split, giving an output of unity gain (1), using a negative feedback
loop to achieve this result. The input of the AGC will go to the negative input of the
op amp. The constant output of the op amp will continue to next stage of the
interface board. The AGC buffer design also takes into account the analog to digital
converter ideal maximum and minimum values of 1V and 5V respectively. Thus
the gain of the first stage and the voltage division of the second stage is designed
to get as close as possible to those ranges, without hitting rail on the operational
amplifiers not going outside of them. Then the second stage of the AGC will divide
it such that when a strong signal is present the analog to digital converter gets
close to 5V in input, but when the signal is at its weakest it still gets above 1V of
input from the AGC circuit.

52

Figure 4.21 Interface Board AGC Schematic

The range of inputs (measured) for the amplitude gain control from the radio are
the following:

Voltage Out dBm uV

2.10 -101 2

2.34 -96 3.5

2.50 -91 6

2.70 -87 10

2.90 -81 20

3.10 -76 30

3.35 -71 70

4.06 -66 120

4.30 -61 200

4.56 -56 350

4.79 -51 700

5.01 -46 1200

5.20 -41 2000

5.45 -36 3500

5.70 -31 7000

6.01 -26 12000

6.33 -21 20000

6.45 -20 20000+

53

Figure 4.22 Relationship between Voltage Out and dBm

Figure 4.23 Relationship between Voltage Out and uV

54

4.7.2 Analog to Digital Converter

After the AGC voltage is received and conditioned it goes to the analog to digital
converter. The Analog to digital converter chosen was the MCP3008.

Figure 4.24 MCP3008

The purpose of the analog to digital converter (ADC) is to provide the
microcontroller with a digital number that is proportional to the magnitude of the
signal, voltage or current, sent from the AGC. The conversion of this signal
involves some error parameter. The higher the number of bits, resolution, available
on the ADC, the more precise the conversion can be. The MCP3008 allows a
precision of 10 bits, this indicates the number of discrete values it can produce
over the range of analog values. An ADC is defined by the bandwidth available,
range of frequencies, and its signal to noise ratio.

During testing using the MCP3008 it was noticed that a tradeoff between sampling
rate and accuracy was happening. Rendering it unable to convert audio signals
into their respective digital forms. This was assessed and determined that a
separate system would perform the audio conversion. Otherwise the integrated
circuit was deemed appropriate for digital quantization of the AGC and Wind
direction values.

Figure 4.25 Data Flow

55

4.8 Audio Codec

Figure 4.26 Audio Codec Pinout

One of the design changes to the analog to digital conversion process in the final
iteration of the PCB was the addition of an audio codec for the audio conversion.
This audio codec is being powered at 3.3V to match the Raspberry Pi 3 for logic
reasons. The codec is also grounded with the system to allow for any feedback or
malfunctions to not fry the codec should something go wrong.

This 3.3V source for the codec limited the input range for the RX Audio circuit but
in the end could be properly implemented into the system and allow to clear audio
digitization and playback for the TX Audio. This 3.3V source also limited the TX
audio but was determined unnecessary as the codec did not output at a 3.3V peak
to peak wave during testing of the playback functionality

4.9 Wind Data

4.9.1 Wind Speed

The anemometer provides our system with 2 important values. The first one being
the wind speed. The anemometer uses a reed switch that is opened and closed by
a magnet that passes over the switch after rotating due to the wind. The wind
speed is determined by counting the closures over a sample period of 2.25
seconds. This sample is then converted to miles per hours (MPH).

Figure 4.27 Anemometer Switch

56

The black and red wires are used to measure the wind speed. The red wire
represents ground. Connected to the black wire the reed switch can be seen open.

Figure 4.28 Anemometer Schematic

Since the anemometer is not powered directly by any source; in order to read from
the reed switch and convert these reading to real values for the next stage of the
circuit, a PNP transistor is used. The transistor chosen for pulse conditioning was
the 2N3906.

Figure 4.29 Internal Schematic Diagram

The base of the transistor is connected to a 1k ohm resistor; this resistor ends
connected with the reed switch from the anemometer. The emitter of the transistor
is connected to a 3.3V voltage source, and the collector is connected to a 1k ohm
resistor and then to ground. The functionality of this transistor follows 2 paths. The
first path being that if the switch is open (no wind) then the base of the transistor
is not connected to ground; hence, transistor is off, no voltage output at the
collector from the source. The second path being if the switch is closed (wind
present) the resistor at the base will be connected to ground, allowing the 3.3V
source run to the collector and communicate this output to the next stage of the
circuit.

57

Figure 4.30 Wind Speed Circuit

4.9.2 Wind Direction

The second important value that the anemometer provides us with is the direction
of the wind. The anemometer uses a potentiometer to determine direction. The
potentiometer can take up to 5V with a current limit of 20mA. The wiring of the
anemometer, to measure wind direction is the following:

Figure 4.31 Anemometer Schematic

The green and yellow wires are used to measure the wind direction. The red wire
represents ground.

In order to condition the value received from the anemometer, an op amp is used
again. The TL084 is an op amp with four (4) stages. Two (2) of these stages were
previously used in the conditioning of the AGC voltage. The input from the wind
direction is pushed into the positive input V+ of the op amp while the 3.3V is pushed
into the negative input of the op amp, V-.

58

Figure 4.32 Op-Amp

The output of the op-amp is then sent to the analog to digital converter, like the
AGC voltage, this value needs to be transformed into a value that can be accepted
by the raspberry pi. The analog to digital converter provides the microcontroller
with an isolated voltage value that is then adjusted in the program to determine the
right wind direction.

Figure 4.33 Data Flow

After building the printed circuit board and prototype and testing this circuit, our
electronics team decided to create a different circuit for conditioning of the wind
direction. Several issues were seen in the performance in the design of the
previous circuit. The circuit was replaced simply by a voltage divider. See the
image below. The input from the wind station can only range from 0 to 5V. The
raspberry pi input, as previously discussed can only be up to 3.3V. This allowed
us to create a voltage divider that would give a proportional output according to the
direction and 5V input.

59

Figure 4.34

One of the advantages of replacing this circuit was also eliminating an operational
amplifier. The proper termination of an unused op-amp will be discussed shortly.

4.10 Master Schematic

All the circuits shown on the next pages will be implemented into the interface
board. They will share the same power supply, and will have their inputs coming
from the King KX-170B VHF Aircraft radio or the anemometer.

60

61

5 Software Design

As mentioned in Chapter 3 our software will be running solely on the Raspberry Pi
in the Python language. The code will utilize the Django framework for the
database aspect of the software. This will require a model for the database
structure. This model will include aspects of wind conditions that our sponsor wants
saved. These attributes include date and time, wind direction, wind speed, variable
wind conditions if detected, and wind gust if detected, but this list can be expanded
in the future.

One apparent issue with the software design is the need to constantly check for
two things – carrier detect and wind conditions – constantly and share variables
between these processes. Redis will be used to fulfill this need. This will use some
RAM on the Raspberry Pi, but not enough to decrease the system’s performance
and is much better than the alternative of constantly writing and reading to a shared
file between the processes.

This chapter is focused on the overall design of the software using structured
flowcharts. Every process past the main logic loop is called on by a previous
process. And with the exception of some initialization function calls, every process
has one entry point and one exit point. Using this type of flowchart allows easy
understanding by all parties and a direct correlation to pseudocode.

62

5.1 Main Logic Loop

Figure 5.1 Main Logic Loop

This is the main loop of our system’s software. It starts with powering on the
system. Once the system is powered up the software will run through an
initialization process. At this point the software will check if the Carrier Detect
(henceforth referred to as CD) signal is high. If the CD signal is high, the software

63

will start the process of “Count Clicks”. This process returns the total number of
clicks counted and is explained in more detail in Section 5.2.

Now that the software has the number of clicks from the “Count Clicks” process,
the software will determine what action to perform. If there were three clicks, the
software will run the “Broadcast Wind Conditions” process, which is explained in
Section 5.1.2. If there were four clicks, the software will run the “Transmit Radio
Check” function, which Is explained in Section 5.1.3. If the software detects there
were less than three or more than four clicks, the software will do nothing and go
back to check if the CD signal is high. This ensures that if a pilot initiates a function
or keys their mic for other reasons, the software will perform the necessary function
and go back to checking for CD.

However, if the CD signal is not high, the software will check if the Update flag (a
variable set by a separate wind data collecting process) is TRUE and that it has
not been longer than a specified time since the initial wind conditions broadcast. If
both of these conditions are true, the software will run the “Broadcast Wind
Conditions” process. But if either condition fails, the software will do nothing and
go back to checking for CD. For example, if the specified timeout for wind condition
updates is 5 minutes, and the update flag is true but it has been 6 minutes since
the initial wind conditions broadcast, the software will not broadcast an update and
will go back to checking for CD.

64

5.1.1 Initialization

Figure 5.2 Initialization

This is the Initialization process of the software. Once the system is powered on,
this process will be immediately called and executed. In this process there are five
main commands. First, the computer will connect to the database that will be set
up. Next, the software will start the web server that will run as long as the pi is
powered on. Then, the Redis functionality will be initialized, which will allocate
some space in memory to be used and allow software to use that space in memory.
Lastly, the wind direction and wind speed functions will be initiated, which will
gather and record data from the anemometer and is further explained in the
following section. From there, the software will return back to the Main Loop.

65

5.1.1.1 Wind Speed Function

Figure 5.3 Wind Speed Function

The wind speed function starts by setting the wind speed variable to 0. This is an
event driven script so the software begins to wait for an interrupt, which would be
the reed switch on the anemometer closing and means the wind cups have fully

66

revolved once. If an interrupt happens, the wind speed variable in incremented. If
there is no interrupt detected, the system checks if 2.25 seconds has gone by. If
not, the software continues to cycle and wait for an interrupt. If 2.25 seconds has
gone by, then it will calculate the average wind speed and set the peak gust value.
Before the value is sent to the next function it is divided by 1.15 to convert it to
knots. Then the wind speed variable is set back to 0 and the software loops back
and continues waiting for an interrupt.

5.1.1.2 Wind Direction Function

Figure 5.4 Wind Direction Function

The wind direction function will behave much in the same way as the wind soeed
function, however calculating the wind direction is a lot easier than calculating the
wind speed. This function starts by setting the wind direction to 0 and then
connecting with the ADC to get the value of wind direction. Then that value is taken
to the function that calculates the average and variable direction and loops around
to set the wind direction back to 0. This process takes place every two seconds.

5.1.1.3 Find Average and Peak Values

Both the wind speed and wind direction functions have a subprocess that
calculates the average peak value(s) for that data. Whether the data is wind speed
or wind direction, the value gets placed in a queue of 20 values and replaces the
oldest value in that queue. This allows the software to keep track of the most recent
values in a 40-45 second period. Those values are cycled through to calculate an
average value and for wind speed, the max value is determined, and for wind

67

direction, the leftmost value and rightmost value is determined. Then all values
associated with the function get saved and stored on Redis to be used by the
broadcast winds function as well as commit the data to the database as described
in section 5.1.3.1.

5.1.2 Count Clicks Process

Figure 5.5 Count Clicks

This process counts the total number of times the pilot keys their mic, or number
of clicks. When this process is activated, the software first sets the clickCounter
variable to 0. Then it checks that the dwell time, that is the total time that CD is

68

high, is between the user specified min and max times. If it is, the software registers
this as 1 click and sets clickCounter to 1. Then it checks that the pause time, that
is the total time between clicks or the total time that CD is low, is between the user
specified min and max times. If it is, the software goes on to check for another
appropriate dwell time and then pause time. It keeps alternating these checks while
also incrementing clickCounter. If at any time the dwell time or pause time is not
within the user specified min and max times, the process will exit back to the main
loop and return the latest value for clickCounter.

5.1.3 Broadcast Wind Conditions Process

69

Figure 5.6 Broadcast Wind Conditions

This process starts after three clicks have been recognized by the main loop of the
software. It starts by grabbing the necessary data from the Redis stores. After
grabbing the wind direction data, wind speed data, wind gust data, and wind
direction variable data, the process will play an mp3 file that speaks, “Apopka

70

Airport”, “Automated Wind Advisory”, and “winds”. Then the software will determine
if variable winds are present. If so, the process will say, “between <leftmost wind
direction> and <rightmost wind direction>”. Next, the process will speak the wind
direction and determine if there is a peak gust that the user should know about. If
there is, the system will speak, “Peak gust” and the peak gust wind speed followed
by “knots”. If there is not a significant peak gust, the process will not do anything
and return to the main loop.
.

5.1.3.1 Save Wind Data to Database

Figure 5.7 Commit Data to Database

This is the process in which data recorded by the anemometer get committed to
the database. The first step is to create a model, which is a form of an object for a
database in Django. After the model is created all the new data can be saved to it.
The wind speed, wind direction, gust, message string, and current time are all
saved as parameters in the model. From there, the software will save the entire

71

model to the database using a Django save method. Once all this is completed,
the process will return to the process that called it.

5.1.4 Transmit Radio Check

There are two possible Transmit Radio Check processes with one using an Analog
to Digital Converter to get incoming audio data and the other using a USB audio
Interface to record incoming audio.

5.1.4.1 Transmit Radio Check with Analog to Digital Converter

Figure 5.8 Transmit Radio Check using ADC

72

This “Transmit Radio Check” process is started when the software registers four
clicks from a user and utilizes the ADC as a way to get incoming audio data. It
starts by prompting the user for a transmit radio check. Then the software checks
if a CD is received within a timeout window (probably around 5 seconds). If a CD
isn’t registered, the software will simply return to the main loop without doing
anything. If there is a CD registered, four subprocesses will be executed;
receive/buffer audio data and AGC level, build the AGC message string, build the
WAV file, and broadcast the WAV file.

These subprocesses use the ADC. When receive/buffer audio data and AGC level
is called the process receives all the incoming data from the ADC and at some
point gets the AGC level also from the ADC. Then the process builds a string to
tag onto the end of the recording when it’s broadcast. Then the WAV file actually
gets built and lastly the process broadcasts the WAV files. Once these steps are
completed, the software will return back to the main loop.

Unfortunately, due to the physical limitations of the ADC that was chosen, this
software loop as well as the following sub processes will not be utilized, but are
still included as they were part of research and development.

73

5.1.4.2 Clean and Format passed in Audio Data

The “Clean and Format Raw Data” function is the main function responsible for
taking in the sampled Audio data, take from the MCP3008 Analog to digital
converter, and makes sure that the data is valid. Once assuring that the data is
valid, this function will convert the raw data into the required two’s compliment and
little endian formats. The input and output of this data will be through file input and
output. We considered simply using a byte array in memory, however the size of
the audio data can very quickly exceed the amount of spaced occupied by a python
variable. To avoid this issue, we will simply pull the sampled 10–bit digital reading
from the analog to digital converter from a text file and then output the
corresponding formatted audio data into an output text file.

74

The first task of this function is to initialize the file variables that we will need. This
includes the input file that will be providing the sample values and then the output
file that will store the formatted data. From here we will begin reading in the
unformatted audio data and read in the first digital value. This is the first command
in a loop with the exit condition being represented by the condition block in the flow
chart. To decide whether or not we need to exit the loop we need to determine if
we are at the end of a file. In python, this is determined by if we have read in a null
byte. If we have received a null byte, we exit this subroutine. If we do not receive
a null byte, then the value read represents the current sample we need to format.
In order to format the sample, we need to first convert the read in sample from a
string to an integer. Here is where we need to briefly revisit how the interface board
is manipulating the audio signal before it is sent through the analog to digital
converter.

Since the MCP3008 does not read negative values, the interface board is offsetting
the voltage by 3V. This means that the base value of all the readings read in are
3V, or have a digital offset value of 522. So the next thing that we need to do is to
subtract the read in digital value by an offset of 522. This will effectively allow us
to receive in negative readings, which is important because audio signals have
both positive and negative readings. Once the offset has been accounted for, we
need to convert the new calculated sample and encode it into the two’s compliment
format. Two’s compliment is the specified format used by the WAVE file format
standard to account and accurately represent the samples taken in the negative
range of the audio signal. Considering that the MCP3008 is a 10-bit analog to
digital converter, we will be using 16 bits to represent the sample in the wave files
we create. This is because the format chunk of a wave file, needs to have the
sample size in bytes represented so that any software playing the wave file know
how to effectively read the formatted data. Since 10 bits is more than one byte, we
need two bytes, or 16 bits, to represent each sample. We are not using multiple
channels on the MCP3008 to read in multiple audio channels, as for the purposes
of this design, a Mono channel audio set up is sufficient. This means we only need
one channel sampling audio data as opposed to two channels for a left and right
stereo audio setup. If we did have left and right channels, we would need a total of
four bytes, two bytes for the left and right channel; however, for a single channel
Mono audio set-up, two bytes are all that is needed. This two-byte window is
equivalent to a short integer in python. While python instinctively determines the
type of variable that is stored, which is usually a 32-bit integer, we must tell python
to force the variable storing the current two’s complimented audio sample to by a
short integer that is 16 bits, effectively two bytes in length. Also, because wave
files store these samples in Little Endian format, we must tell python to force this
short integer to be in this particular byte order standard. Both the tasks of forcing
the converted two’s complimented audio sample to be a short integer with a length
of 2 bytes, and forcing the byte order of that short integer to be in a little endian
format in the same line of code. Therefore, these two steps are represented as a
single block and are effectively treated as one step in this subroutine. Lastly we
need to write the formatted audio sample to the output file we will use to build the

75

wave file in another subroutine as well as increase the bytesRead counter by 2.
This bytesRead counter is responsible for keeping track of the total bytes of raw
audio data were converted, and will be responsible for returning the amount of
audio data needed to be written, in bytes, to the finalized data chunk of the wav
file. We are increasing this bytesRead counter by two, because there are two bytes
being represented for each digital audio sample we read in from the input file. Since
the total size of the data needs to be represented in bytes, we must increase this
counter by two bytes for every sample.

5.1.4.3 Build WAV File

Figure 5.9 Build WAV File

76

The Build WAV File sub process is used to take the read in Audio data from the
Audio Channel of the Analog to Digital Converter and create a .wav file that can
be replayed and broadcasted out back through the radio. To understand this
process, you must understand a small piece of how WAV files are structured. A
WAV file is a type of file called a Resource Interchange File Format, or “RIFF”, file.
RIFF files have a Header Section, depicting what kind of RIFF file (WAV, MP4,
etc.) it is followed by multiple sections called “chunks”. The WAV format has 2
chunks which include the “format” chunk and the “data” chunk. The format chunk,
sets key fields that tell the program reading the file how to handle the audio for
playback. The Data chunk is essentially the pure audio data in whatever recording
format was set by the format section. This means that in total the WAV file format
has 3 main sections: the Header, the Format Chunk, and the Data Chunk. In this
section there will be three sub sections containing the sub processes to create,
populate, and format the data for each of these three sections. In order to
understand each of the sub processes for each section of the WAV file below, we
will need to go over the necessary fields for each section/chunk of the WAV file.
These fields are necessary in order to understand the flow of each sub process
whose purpose is to format and populate the data and fields for each section.
Therefore, it is also necessary to include these field tables with a brief description
of the fields which is done below.

Header Section

Field Name Size (in bytes) Endian-ness

chunkID 4 Big

chuckSize 4 Little

riffFormat 4 Big

The first section of a WAV file is the Header which consists of 12 bytes of data.
The first 4 bytes, and the first field of this section is the Chunk ID. This Chunk ID
is unique since it is the identifier indicating what type of file it is. This field always
contains a value of “RIFF” to indicate it is a Resource Interchange File Format file.
The Second field is the chunkSIze; this field is also unique as it contains the size
of the entire file in bytes minus the 8 bytes of data (for the chunkSize and chunkID)
in this Header Chunk of the WAV file. Lastly is riffFormat field which tells the
program reading the file what type of RIFF file it is reading. Since we are writing to
a WAV file, this field will always be set to “WAVE”.

77

Format Chunk Section

Field Name Size (in bytes) Endian-ness

chunkID 4 Big

subChunkSize 4 Little

audioFormat 2 Little

numOfChannels 2 Little

sampleRate 4 Little

byteRate 4 Little

blockAlign 2 Little

bitResolution 2 Little

The Format Chunk contains multiple fields that let the program reading the file
know how the actual audio data is formatted. Like the Header section, the Format
Chunk contains a chunkID and a chunkSize desribed as subChunkSize. However,
these fields refer strictly to the data included in the Format Chunk as opposed to
the entire file. The chunkID is always set to “fmt” indicating it is the format chunk.
The space character is included in this field to fill out the 4th byte so the file does
not include a null byte in the middle of the data. Likewise, the subChunkSize field
includes the entire size of the Format Chunk which will always be 16 bytes in length
letting the reading program know how many bytes there are before the next
section. Next is the audioFormat field which in this case will be set to a value of 1
indicating that the audio data is in a Pulse Code Modulated audio format. Next is
the numOfChannels field which, as its name implied, contains the number of audio
channels being sampled. The two fields above are only 2 bytes in size so the
Endian-ness of these fields are not so important. The sampleRate field and
byteRate field are pretty self-explanatory and hold the sample rate, in Hz, in which
the audio was sampled by the Analog to Digital Converter, and the calculated byte
rate of the audio calculated from the sample rate, number of channels and bit
resolution. These two fields above are each 4 bytes in length and are formatted in
Little Endian. The blockAlign field stores the number of bytes per sample in all
sampled channels. The bitResolution field holds the number of bits per sample.

Data Chunk Section

Field Name Size (in bytes) Endian-ness

chunkID 4 Big

subChuckSize 4 Little

rawData variable Little

The Data Chunk is the final chunk of the WAV file containing the actual audio data
sampled by the Analog to Digital Converter. Like the two other chunks, the Data
Chunk contains two fields for the chunkID and the overall size of the rawData. The
chunkID is always “data” and the subChunkSize is an integer in Little Endian
Format. The last section of the Data Chunk and the WAV file is the rawData which,

78

as implied, contains the raw audio data read by the Analog to Digital Contverter.
The main thing to note here is that the rawData field has each sample in Little
Endian Format. This means with two channel audio with a 16-bit resolution, each
set of 16 bytes will be in Little Endian Format but the order in which each sample
was take remains in order. This means the ENTIRE SECTION is NOT in Little
Endian format, but each SAMPLE is in Little Endian Format. This holds true for
each channel. The two channels as a whole are NOT Little Endian, but each
channel is of Little Endian format starting with the left audio channel followed by
the right audio channel.

In order to build the WAV file from the read in audio data, we first need to build
each section of the WAV file in byte array buffers that can be directly written to the
WAV file. We can break these up into three different sub processes: Build Header
Buffer, Build Format Chunk Buffer, and Build Data Chunk Buffer. These sub
processes will create, populate, format, and return the byte array buffer for their
particular sections of the WAV file. However, to populate the header section of the
WAV file, we need the size of the Format and Data chunks; this means that the
two sub processes in charge of returning these sections need to happen before
we create the header buffer that contains the fields for the header section. To make
things simple we have arranged the sub processes for creating the sections for the
WAV file in reverse order in order to process and clean the data, format the WAV
file, and then create the header section. This was every sub process for each
section of the WAV file has all the information it needs about the other sections
before running.

We first run the “Build Data Chunk Buffer” sub process in order to clean and format
the audio data read in by our Analog to Digital Converter as well as populate all of
the remaining fields of the Data Chunk (these fields are shown below in the Build
Data Chunk Buffer sub process section). This sub process will return the byte
buffer containing the formatted bytes for the Data Chunk of the WAV file (which
includes the formatted audio data from the ADC). Next we run the “Build Format
Chunk Buffer” sub process to build, populate and format the Format Chunk of the
WAV file. This sub process will return the byte array buffer containing the Format
Chunk for the WAV file. Next we run the “Build Header Buffer” sub process which
will build, populate, format and return the byte array buffer containing the Header
section for the WAV file. This sub process will need to be given the size of the Data
Chunk Buffer and the Format Chunk Buffer to properly calculate the fields for the
header section (these fields are shown below in the “Build Header Buffer” sub
process section).

After all of the byte array buffers for the three sections of the WAV file have been
created, formatted, and returned by their respective sub processes, we need to
write them to the WAV file. The first step here is to actually create and open a WAV
file. Since each Transmission Check will not need to be saved to the system or
database and multiple Transmission Checks cannot happen at the same time, we
can simply and safely write over the existing WAV file, if there is any, and write the

79

new Transmission Check audio data to the WAV file. If there is no existing WAV
file, we will simply create one. We do not include a decision block to determine if
we need to create or overwrite the WAV file here, since the python line to create
and overwrite a file are exactly the same. However, we do need to check whether
the WAV file opened successfully. If there was error opening the WAV file, we
return with an error to the parent process, otherwise we continue to writing the
sections to the WAV file. Next we will simply write each Sections byte array buffer
to the file in order. First we write the Header Buffer to the WAV file; then we write
the Format Chunk Buffer to the WAV file, and lastly we write the Data Chunk Buffer
to the WAV file. We do not have to create sub processes for writing each buffer to
the WAV file because the write method in Python’s File object is polymorphic and
can take a single variable or any type of array (including a byte array) as its
argument. This means the parsing of the buffer to write each byte is abstracted
away by Python’s File Input/output API and we do not have to worry about creating
this method ourselves. After writing the buffers to the Wav File, we will close the
WAV file and return from the Build WAV File sub process.

80

5.1.4.4 Build Data Chunk Buffer

Figure 5.10 Build Data Chunk Buffer

The Build Data Chunk Buffer sub process takes in the raw audio data and builds
the byte array buffer for the Data Chunk of the wav file to be returned to the parent
“Build WAV File” process. The process starts by running a sub process that will
clean and format the raw audio data. This sub process will be responsible for
making sure the raw data is of the correct format and Endian-ness so that I can
simply be written into the Data Chunk Buffer as is. This process is too long to be

81

included here so it is included as the sub process “Clean and Format passed in
audio data”. Once we have the returned audio data that has been cleansed and
formatted, the next step is to measure the size of the formatted audio data returned
from the “Clean and Format passed in audio data” sub process. This measurement
will have to be formatted in Little Endian Format but we will do so later. Next using
the calculated size of the raw audio data, we know how large our Data Chunk
Buffer will be. The size of this byte array will be the measured size of the formatted
audio data plus 8 bytes for the chunkID and subChunkSize fields.

Now that we have all of the required fields for the Data Chunk of the WAV file, we
can start writing those values into the Data Chunk Buffer. First we will write the
chunkID, whose value will always be “data”, to the first 4 bytes of the Data Chunk
Buffer. This field does not have to be formatted since it is already in the required
Big Endian Format. Next we take the calculated size of the formatted audio data
and convert it into a Little Endian formatted integer so that it can be written into the
Data Chunk Buffer byte array. After this conversion, we then write the converted
subChunkSize to the next 4 bytes of the Data Chunk Buffer. Lastly, we can write
the formatted audio data we got from the “Clean and Format passed in audio data”
sub process into the remaining byte space of the Data Chunk Buffer. We do not
need to format here before writing since the sub process formatted the raw audio
data for us. At this point the Data Chunk Buffer byte array contains the complete
and correctly formatted Data Chunk and can be returned to the “Build WAV File”
parent process.

82

5.1.4.5 Build Format Chunk Buffer

Figure 5.11 Build Format Chunk Buffer

The “Build Format Chunk Buffer” sub process takes in no arguments and builds
the byte array buffer for the Format Chunk of the wav file to be returned to the

83

parent “Build WAV File” process. The first task is to initialize the byte array that will
be the Format Chunk Buffer. The Format Chunk of a WAV file is always the same
size regardless of how large the raw data is since the fields are all of fixed length.
With all of the field sizes added together the total size of the Format Chunk is 24
bytes long. Therefore, we can initialize our Format Chunk Buffer byte array to be
24 bytes in length. From here we will simply go through and write each field of the
Format Chunk to the buffer making any calculations we need on the way. The first
field is the chunkID which is always set to “fmt”. Keep in mind that the space
character must be included to avoid any NULL bytes from being included in the
middle of the WAV file.

Next we can set the subChunkSize field to be the integer value of 16 in Little
Endian format. This value represents 16 bytes as opposed to the total size of the
Format Chunk Buffer (24 bytes) because this field is simply there to let the program
reading the file know the amount of space, in bytes, that it has to read before it
gets to the Data Chunk section of the WAV file. The next field in the Format Chunk
is the audioFormat field which indicates how the raw audio was sampled. Almost
all Analog to Digital Converters sample using some form of Pulse Code
Modulation. We indicate this by placing the decimal value of 1 in this field to select
the PCM method. However, it is important to note that this field is of two bytes in
length. This means since we stored this integer in a short integer in Little Endian
format, we need specifically grab the first 2 bytes of the variable to write to the
Format Chunk Buffer. If we write the full variable, we will exceed the byte limit of
the field and corrupt the WAV file.

Next we will write the number of channels that we are using into the Format Chunk
Buffer. Like the audioFormat field, the numOfChannels field is two bytes, so we
must only grab the first 2 bytes of the short integer (Little Endian formatted)
variable. This field’s value can either be a decimal value of 1 or 2 depending if you
have a mono or stereo audio set up. Since we are grabbing the audio for the
Transmission Check from the speaker pins of the radio, we will be using 2 channels
and will set this field to a value of 2. Next we will set the following 4 bytes of the
Format Chunk Buffer to be the sampling rate at which we sampled the audio in
Hertz. This means that we will be setting this value to be 44100 represented by a
Little Endian Formatted Integer as we want to sample double the frequency of any
sound audible to the human ear per the Nyquest Sampling Theorem. To write the
following fields, we will need to calculate them in reverse order to avoid making the
same calculations multiple times to improve efficiency. We can make all of the
calculations using the Little Endian Format for integers to avoid having to format
each field before writing the field values. This way all of the field values are already
in the correct format. We know the bitResolution by default and will set this value
to bit resolution of the Analog to Digital Converter we are using. Using the bit
resolution, we are able calculate the blockAlign by dividing the bitResolution by 8
and then multiplying by the number of channels we are sampling. Then lastly we
can calculate the byteRate field by multiplying the sample rate number of channels
and block align fields together. Now we can simply write each field to the Format

84

Chunk Buffer byte array in order. First we write the byteRate field to the Format
Chunk Buffer as is since the field is 4 bytes in length. Then we write the first 2
bytes of both the blockAlign and bitResolution fields, respectively, since these
fields are only 2 bytes in length from the Format Chunk’s prospective in the WAV
file. From here we have the complete byte array for the Format Chunk Buffer and
can return it to the “Build WAV File” parent process.

5.1.4.6 Build Header Buffer

Figure 5.12 Build Header Buffer

The “Build Header Buffer” sub process takes in the Data Chunk Buffer Size and
the Format Chunk Buffer size as arguments to build the byte array buffer for the
Header Chunk of the WAV file to be returned to the parent “Build WAV File”
process. The first task of this sub process is to initialize the Header Buffer. Since
the Header Chunk of a WAV file is always the same size, we can initialize the

85

Header Buffer byte array to be 12 bytes in length for the three 4 byte long fields.
We can start by writing the chunkID field to the buffer. As stated above, this value
tells the program reading the WAV file what type of file it is reading. This field is
always the string “RIFF” and can be written to the Header Buffer in Big Endian
Format.

Next we calculate the total size of the WAV file which can be done by adding the
passed in sizes of the Format Chunk Buffer and the Data Chunk Buffer plus 4 for
the remaining riffFormat field in the Header Chunk. We do not need to include the
8 bytes from the first two fields since the purpose of the chunkSize is to tell the
program reading the WAV file how many bytes it needs to read before it reaches
the end of the file from the point it’s at (which is already past the first 2 fields of the
Header Chunk). From here we can write the resulting chunkSize field to the second
4 bytes of the Header Buffer in Little Endian format. Lastly, we need to write the
riffFormat field to the Header Buffer. This value simply tells the program reading
the WAV file what type of RIFF file it is reading. For WAV files this value is always
the string “WAVE” and can be written to the last 4 bytes of the Header Buffer in
Big Endian format. From here the Header Buffer is contains the complete formatted
contents of the Header Chunk and this sub process can return the Header Buffer
byte array to the “Build WAV File” parent Process Communication with Interface
Board.

86

5.1.4.7 Transmit Radio Check Process with USB Audio Device

87

Figure 5.13 Transmit Radio Check

This “Transmit Radio Check” process is started when the software registers four
clicks from a user and utilizes a USB audio interface. It starts by prompting the
user for a transmit radio check. Then the software checks if a CD is received within
a timeout window of 3 seconds. If a CD isn’t registered, the software will simply
return to the main loop without doing anything. If there is a CD registered, the
process will start recording audio from the USB interface. While it’s recording, the
AGC level will be grabbed from the ADC. At this point the radio will be put into
transmit mode and the recorded audio as well as the calculated power level will be
broadcast to the user, then the radio will be taken out of transmit mode. Once these
steps are completed, the software will return back to the main loop.

88

5.1.5 Pin Layout and SPI

Figure 5.14 Raspberry Pi 3 GPIO Header Layout

Interface Board Physical Pin # GPIO Logical Pin #

TTLPTT 13 27

TTLCD 11 17

SPI (MISO) 21 9

SPI (MOSI) 19 10

SPI (SCLK) 23 11

SPI (CE) 24 8

Pulse Counter 38 20

TX Audio 3.5mm Audio Jack -

RX Audio USB Audio Card -

Above is an image of all 40 of the GPIO pins available on the Raspberry Pi 3
showing their physical pin number as well as their software available GPIO pin

89

number. Above you will also find a table showing which connection from the
interface board is going to what pin on the Raspberry Pi. It is really important to
note that not all of these available pins are general purpose pins and have specific
purposes and all GPIO pins both receive and transmit digital signals. This means
that these particular pins cannot be used; a good example of this includes the
various ground pins located on the GPIO pinout. Concerning all of the inputs and
outputs between the Raspberry Pi’s GPIO pins and the Interface board, there 5
connections to mention: TTL PTT (GPIO pin 27), TTL CD (GPIO pin 17), SPI Bus
(hardware spi), Pulse counter (GPIO pin 20), TX Audio Out (Onboard Audio Jack),
and RX Audio In (USB Sound Card).

The TTL PTT signal will be connected from the Raspberry Pi 3’s GPIO pin number
27 to the interface board. This connection will be active high, meaning that when
the software wishes to broadcast a signal, it will set this pin high letting the interface
board know to send the appropriate signals to the radio. Secondly is the TTL CD
which will connect the Interface board to Logic GPIO pin 17 on the Raspberry Pi’s
external pins. This pin will be active high, and upon the pin going into a high state,
the software will be notified that there is a signal being detected by the radio. This
pin will be utilized to select certain function options, such as WX transmit and TX
Check, as well as let the software know when to start reading in audio data from
the SPI bus. The SPI bus, or Serial Peripheral Interface bus, is a communication
method implemented on many proprietary chips like the MCP3008 Analog to
Digital Converter we are using. This communication protocol involves 4 main
connections between the two components that are transferring and receiving data.
While most of the connections run straight from the MCP3008 ADC on the interface
board to the Raspberry Pi, the main data line coming from the MCP3008 to the
Raspberry Pi must run through a voltage divider since the MCP3008 is running on
a 5V logic digital level and the Raspberry Pi is running on a 3.3V digital logic level;
so from here on out I will refer to the connections as being in between the interface
board and the Raspberry Pi’s hardware SPI pins.

The 4 connections for the SPI bus include Master in Slave Out (MISO), Master Out
Slave In (MOSI), The Clock Line (SCLK), and the Chip Enable Line (CE). All of
these connections are digital and active high with the exception of the CE signal
which is a digital active low signal. In this architecture we will refer to the Raspberry
Pi as the “Master” and the Interface Board as the “Slave”, due to the fact that the
Raspberry Pi will be driving the actions of reading and writing data while the
Interface Board will simply be providing and receiving data on command. All SPI
connections will be connected to the hardware SPI pins as shown in the table
above. The MISO line will be for reading in data from the Interface board that has
been Analog to Digitally converted. The MOSI line will be for the Raspberry Pi to
send data to the Interface board essentially telling the ADC which channel to read
and what data to send back. The SCLK line is to keep the clocks of the Raspberry
Pi and the ADC located on the Interface board synchronized. Lastly the CE line
will be set to low whenever the Raspberry Pi wants to read from that chip. Looking
at the Pulse Counter connection, this connection is coming from the Interface

90

board and will be set to High in pulses as the wind direction moves. The Raspberry
Pi will monitor this pi and keep track of how many pulses it gets, helping it
determine the wind speed coming from the sensor. Lastly we have the TX Audio
which will be coming from the Raspberry Pi to the Interface Board from the Audio
Jack mounted onto the Raspberry Pi. As the name suggests this will be the signal,
that when TTL PTT is set to a digital High, will be sent to the Interface board to be
broadcast out over the radio channel.

5.1.6 MCP3008

5.1.6.1 Background Information

For the Analog to Digital Converter we chose to use the MCP3008. This particular
ADC as chosen due to the fact that the software libraries and interfaces for this
chip were already open-sourced by Adafruit Industries. This made reading from
the chip easier and allowed us to focus more on what we were going to do with the
information provided to us as opposed to spending time writing code to get the
information we needed. Secondly we chose this chip from a software standpoint
because we can use MCP3008 to read all of our analog signals as opposed to just
a group of them. This versatility provides for a lot of code reuse as instead of having
to read data from multiple sources we can read all of our sensor data from one
chip.

It is important to note that the PCM1862 was a viable option for reading the Audio
Data specifically as we were not sure whether or not that reading our audio data
from the same ADC as other data would affect the quality of the audio read in. The
PCM1862 is a dedicated audio ADC that has built in filters and Automatic Gain
Control. However, we concluded that having a separate, dedicated Audio ADC
was not needed as we were already using the interface board to filter and add gain
to the signal. Also the other analog signals that the MCP3008 would be reading
are sampled at extremely low sampling rates. This means that we do not have to
worry about the other components lowing the MCP3008’s total sample rate to a
low enough rate in which audio could not be affectively read. Our final conclusion
was that the MCP3008 would be accurate and fast enough to sample and convert
all of the analog signals coming from our external sensors as well as audio data.

5.1.6.2 Analog to Digital Conversion

Since we will be get values from the MCP3008 that have been converted from an
audio signal that has been amplified and offset by 3V, for the software it will be
important to take note of the relationship between the input analog voltage and the
outputted digital signal. Taking a look at the MCP3008’s datasheet, we are
provided an estimated equation taking in the voltage level of the received analog
input and outputting the expected digital value from the chip. For our system we
are operating the chip at a Vref of 5V. The equation is provided below. Using this
equation from the datasheet, it was important to compare the values expected to
the actual values we were getting from the system. Below is a table that provides
the sampled voltage level from an inputted analog wave and outputs the 10-bit

91

Value read from the software sampling the ADC at 8 KHz. The third column is the
output of the equation provided by the MCP3008’s datasheet using the 5V Vref
and the Voltage level from column one as inputs.

𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 𝐶𝑜𝑑𝑒 =
1024 × 𝑉𝐼𝑁

𝑉𝑅𝐸𝐹

Where:

𝑉𝐼𝑁 = analog input voltage
𝑉𝑅𝐸𝐹 = reference voltage

Voltage
Level

10-bit
Value

Expected
Value

 Voltage
Level

10-bit
Value

Expected
Value

4.99 1023 1022 3.44 608 705

4.97 1019 1018 3.4 600 697

4.96 1017 1016 3.34 586 685

4.95 1015 1014 3.29 578 674

4.94 1013 1012 3.25 569 666

4.93 1011 1010 3.19 559 654

4.92 1010 1008 3.14 548 644

4.91 1008 1006 3.1 541 635

4.89 1003 1002 3.06 533 627

4.84 990 992 3 522 615

4.8 978 984 2.94 511 603

4.73 954 969 2.9 504 594

4.71 945 965 2.85 494 584

4.64 919 951 2.8 486 574

4.59 902 941 2.75 478 564

4.54 886 930 2.69 468 551

4.5 875 922 2.65 460 543

4.44 856 910 2.6 452 533

4.4 842 902 2.55 442 523

4.34 824 889 2.5 433 513

4.29 808 879 2.45 425 502

4.2 784 861 2.39 415 490

4.15 768 850 2.35 407 482

4.1 756 840 2.29 399 469

4 731 820 2.25 391 461

3.96 720 812 2.2 382 451

3.9 705 799 2.15 375 441

3.84 692 787 2.09 364 429

3.81 686 781 2.05 359 420

3.74 671 766 1.99 347 408

3.7 661 758 1.95 341 400

3.66 654 750 1.9 331 390

3.6 639 738 1.85 323 379

3.55 629 728 1.8 315 369

92

3.5 619 717 1.75 308 359

1.7 300 349 0.64 124 132

1.64 291 336 0.6 116 123

1.6 282 328 0.55 108 113

1.53 272 314 0.5 98 103

1.5 266 308 0.45 90 93

1.45 259 297 0.4 81 82

1.39 248 285 0.35 72 72

1.34 240 275 0.29 61 60

1.29 231 265 0.25 53 52

1.25 225 257 0.2 43 41

1.19 216 244 0.15 33 31

1.14 207 234 0.09 20 19

1.1 200 226 0.05 12 11

1.05 192 216 0.045 10 10

1 183 205 0.039 8 8

0.95 176 195 0.029 6 6

0.9 168 185 0.021 4 5

0.85 158 175 0.016 3 4

0.79 149 162 0.003 1 1

0.74 141 152 0 0 0

0.7 133 144

To better visualize the relationship between the expected values from the equation
and the actual values that we are reading, we graphed the data from the table
above.

Figure 5.15 Relationship between Input Voltage and 10-bit Value with Expected

After graphing the relationships of both the Voltage Level to Read 10-bit Digital
value and the Voltage level to the Expected digital value from the equation
provided by the datasheet, it is important to note that there is some slight deviation
from the linear behavior the equation provided by the datasheet expects. Taking a

93

look at the graphed chart above (generated from the table above), you can see
that the read 10 bit digital values are relatively linear, but express some non–linear
behavior between 1V and 4.5V. In this range the reading we took began to deviate
slightly from the expected values generated by the equation from the datasheet.
The non-linearity here may be due to the operation system driving the sampling of
the chip. Most ADCs are run on microcontrollers that run precompiled and fast
code, where in this case the operating system is in control of almost every part of
the system. That being said, the non-linearity is within an acceptable range for the
data we are sampling and we will proceed with using the MCP3008.

5.1.6.3 MCP3008 Communication Logic

Figure 5.16 MCP3008 Logic

Communication between the Raspberry Pi and the MCP3008 Analog to Digital
converter happens over the hardware SPI interface between the two. However, for
the Raspberry Pi to read from the MCP3008 there is a certain protocol in which to
communicate that read action. While this communication process will be handled
by the software using the Adafruit_MCP_3008 python library, the process in which
this is depicted by the image above taken from MCP3008’s datasheet. The first
step is for the Raspberry Pi to let the MCP3008 know it will be selecting a function
from that chip; it does this by setting the CE pin low. From here the Raspberry Pi
will send a series of configuration bits over the SPI_MOSI line. These configuration
bits and their functions are shown in the following table.

94

Figure 5.17 MCP3008 Channels

When the MCP3008 receives these configuration bits, it will know what function to
perform and returns the necessary data back over the SPI_MISO line prefaced by
a Null bit. This Null bit lets the Raspberry Pi know it should begin receiving data.
For example, if the Raspberry Pi sent over the bit sequence 1000 out over the
SPI_MOSI line, the MCP3008 would read the Analog signal from channel 0,
convert it to a digital value, and send that digital number back over the SPI_MISO
line prefaced by a Null bit. After the data has finished transmitting, the Raspberry
Pi will reset the SPI_CE pin back to High so that the chip will not receive any
unintended signals from the Raspberry Pi.

95

5.2 Configuration Screen

The configuration screen is a sub-section of the website that will allow a
administrative user to change certain configurations and parameters that the
AirBud automatic field based operator will use in its main scripts and programs.
The configuration is simply a Django Python Framework module that, when logging
into the Django administration webpage, will allow the user to view and change the
listed configurations. The URL for the page is
http://192.168.20.1/admin/airbudconfiguration, and can be viewed from any
computer connected to the Raspberry Pi via Ethernet cable.

Figure 5.18 Screenshot of Configuration Screen

Each of the above entries represents a setting that can be configured in the main
system. Changing and saving them here will update them in the main system as
soon as the raspberry pi is restarted, since these properties are only loading in the
main program on startup.

96

5.3 Web Server

The web server for this project will be developed using Python’s Django Web
Framework. The server will consist of three main modules: the settings module,
described above, the data module, used for storing wind information read from the
main programs in the database, and the main module (provided by Django) that
combines all of the modules and serves the appropriate web pages. The web
server will also contain certain asynchronous tasks that will allow data to be stored
asynchronously into the database. This prevents the main scripts, providing the
data from the wind station and main system, from freezing if the web server gets
overwhelmed by web requests to grab the wind data and store it in the database.

We chose to use Python’s Django Web Framework as our base server for a couple
of reasons. First it allowed us to abstract away the database queries and set up.
Django allows the programmer to write the database schema, using a class and
object programming style. This lets us treat each database entry as an object and
handles the SQL behind the scenes. This was convenient for us and allowed us to
focus on building the main system. Secondly, the Django Web Framework is
created and used in the python language, which was the programming language
we were already using for our main program. This would insure that the scripts and
the web server would be compatible programmatically should they need to be
integrated, and/or share resources for any reason.

A user can access the web server by connecting to the DHCP server also on the
raspberry pi. Since the website is only intended to be accessed by an operator on
the ground, we decided to utilize the on board Ethernet port as the main means of
connecting to the web server and configuration screen. The Raspberry Pi DNS
masks the IP address 192.168.20.1 as the static url for the raspberry pi, so an
computer connected to it from the Ethernet port can access the webserver by
browsing to that address in their preferred web browser.

97

6 Integration, Prototype, and Final Design

6.1 Interface Board Breadboarding

For breadboarding and testing purposes the operational amplifiers used were
TL084s due to ease of access. But for the practical application of this circuits the
operational amplifiers used will be LM324s. This is because in the final PCB the
interface board will have no negative DC power sources. The behaviors of both
operational amplifiers under the current application is similar enough to the point
where their performance is interchangeable if power sources were not to be
considered.

6.1.1 PTT Circuit

Figure 6.1 PTT Circuit Breadboard

6.1.2 RX Audio Circuit

Figure 6.2 RX Audio Circuit Breadboard

98

6.1.3 TX Audio Circuit

Figure 6.3 TX Audio Compressor Circuit Breadboard

Figure 6.4 TX Audio Low Pass Filter Circuit Breadboard

99

Figure 6.5 Section of Overall Breadboard

For prototyping, several 3.3V regulators were tested. The first one to be tested was
the LM317. The input to the regulator is 13.8V, this is also connected to a .1uF
decoupling capacitor. This capacitor adds fast charge storage, commonly used
when connected to a power supply which are relatively slow. The second pin on
the regulator is connected to 300ohm resistor and a 240ohm resistor. The value of
300ohm was found by connecting a potentiometer to the second pin and adjusting
it until 3.3V were reached. Once the output was set and constant, the
potentiometer was removed and its set value was measured so it could be
substituted with a single value resistor. The output of the regulator is also
connected to a bypass or decoupling 1uF capacitor that serves the same purpose
of adding fast charge storage. Below is the schematic for the 3.3V regulator setup.

100

6.1.4 3.3V Regulator Circuit

Figure 6.6

As mentioned this circuit was used for prototyping. The 3.3V output was used for
the logical output of the comparator. Although there is a second use of 3.3V on our
system, to the raspberry pi, this regulator is not able to provide the necessary
current to power the microcontroller. The picture below shows the regulator
connected to the resistors and capacitor.

Figure 6.7 3.3V Regulator Circuit Breadboard

The image below shows the output of the 3.3V regulator along with the input
connected to the oscilloscope. The input is 13.8V and out 3.3V.

101

Figure 6.8

6.1.5 Carrier Detect Comparator Circuit

Another segment of the prototype is the comparator circuit. The 8.5k ohm and 10k
ohm resistors can be seen at the left of the picture where the 13.8V input comes
from the supply and it’s then divided. Note that on the image, pin 1 of the
comparator is at the bottom right.

Figure 6.9 Comparator Circuit Breadboard

102

6.1.6 AGC Conditioner Circuit

Below is the TL084 op amp used for the AGC. The input power rails can be seen
on the left and right of the image and can also be seen on the main image of the
breadboard. The input during the prototype testing was 13.8V. The voltage for
operation that will be given to the op amp in the final design will be 12V from the
12V regulator. The op amp can provide with up to 4 stages to use. The AGC circuit,
as previously discussed, uses the first two stages which can be observed on the
left side of the op amp.

Figure 6.10 AGC Conditioner Circuit Breadboard

The PNP transistor used for prototyping was the TIP42C. This is a power
transistor, this will suffice our use for testing and seeing the change in wind speed
but it will not be quick enough for the final system. A switching transistor will be
used in the final system. This transistor was used for testing only like the 3.3V
regulator. Below is the setup on the breadboard as seen on the schematic of the
overall system. The 3.3V rail is given by the 3.3V regulator and used when the
wind speed input (left) is connected to ground. Overall acting as a switch for the
3.3V source according to the wind speed. This 3.3V output is then sent to the
raspberry pi through a general input/output pin.

103

Figure 6.11

The image below continues to show the output and input of and to the PNP
transistor to measure the wind speed. The input and output were connected to the
oscilloscope and displayed below. Channel 1 output and channel 2 input. It’s
important to note that when there is wind speed being measured the output of the
transistor becomes the square wave output with a magnitude of 3.3V as seen on
the image.

Figure 6.12

Added to the list of components tested is the 5V regulator. This is the regulator
used when measuring the wind direction. This 5V input is connected to the wind
vane and ground, the output of the wind vane is sent to the op amp and then to
the analog and digital converter. The breadboard circuit below shows the input and
output along with the setup of the regulator. A .1pF capacitor was added at the
output to ground to prevent oscillations.

104

Figure 6.13

The image below shows the output of the 5V regulator along with the input connected to
the oscilloscope. Two channels were used and can be seen in this image. The input of
13.8V and the of output 5V.

Figure 6.14

The last voltage regulator used in our system is the 12V regulator. The output of
this regulator is used to power the positive input of the TL084 operational amplifier.
The image below shows the setup used on the breadboard for testing purposes.

105

Input to device of 13.8V and output of 12V. A capacitor was added to the output
and ground to prevent oscillations.

Figure 6.15

The image below shows the output of the 12V regulator along with the input
connected to the oscilloscope. Two channels were used and can be seen in this
image. The input of 13.8V and the of output 12V. If compared to the 5V and 3.3V
regulators it is clear to see the constant but different outputs of each one of them
sharing a constant input.

Figure 6.16

6.2 Signal Conditioning Testing

All of the following tests were during the bread boarding phase and do not
represent the final values or ranger due to final tests during the full system build.

106

Though they are indicative of the intent behind each circuit design. This is
addressing the desire of a DC output, high frequency noise filtration and final
amplification.

6.2.1 RX Audio Circuit

Testing the RX Audio signal circuit, the input to it was a simulation of the output
signal of the radio. After extensive testing with the KX-170B VHF Aircraft radio and
various input made into pin 39. The received signal by our oscilloscope was a
maximum signal of 320mV peak to peak with some offset. This signal was then
pushed through the circuit and measured at various points to ensure the circuit
was behaving was designed

Figure 6.17 RX Audio Input

With the 320mV peak to peak signal being passed through a polarized 1µF
capacitor the 80mV DC offset was removed.

107

Figure 6.18 RX Audio Input with No Offset

Passing the signal through a conditioning circuit for the analog to digital converter,
the signal is again offset with a 2.5V reference voltage provided by the 5V power
supply in the interface board.

108

Figure 6.19 Filtered RX Audio at 4KHz

Finally, after the signal is offset by the conditioning circuit it is passed through a
final low pass filter to ensure that the audio is not affected by any outside noise. It
should be noted that due to the equipment being used to measure the signal while
also having a DC offset made it so that the scale used to measure the signal be
kept relatively high. Leading to the equipment having trouble reading the input
frequency. But because the signal being generated was through a function
generator and previous measurements demonstrated the frequency of the signal
was accurate at 4kHz.

109

Figure 6.20 Filtered RX Audio at 9KHz

Figure 6.21 RX Audio Circuit Through Low Pass Filter

110

As it can be seen the amplitude of the signal when at higher frequencies is
considerably lower than that of the 4kHz used in radio communication. Ensuring
that a 2nd order Butterworth low pass filter will be enough to properly filter out any
noise in the RX Audio prior to digital conversion. Though a higher order Butterworth
would be possible it would not serve much purpose since noise is going to be in
the MHz range. This higher order Butterworth would not only require more
components, this increasing costs it would also serve little to no purpose. With the
current gain drop at higher frequencies once MHz are reached the signal would be
almost nonexistent.

6.2.2 AGC Signal

Since the AGC signal coming from the King KX-170B is a DC signal connecting
the circuit input into a DC power source, and using that DC voltage as the AGC
values was used for circuit testing. This provided information on how the circuit
would behave once finally interfaced with the King KX-170B VHF Aircraft Radio.

AGC In (V) AGC Stage I
Out (V)

AGC Stage II
Out (V)

2.1 3.09 1.54

2.34 3.44 1.73

2.5 3.68 1.84

2.7 3.97 1.98

2.9 4.26 2.14

3.1 4.56 2.28

3.35 4.93 2.67

4.06 5.97 2.99

4.3 6.32 3.16

4.56 6.7 3.36

4.79 7.04 3.53

5.01 7.37 3.69

5.2 7.65 3.83

5.45 8.02 4.01

5.7 8.38 4.2

6.01 8.83 4.42

6.33 9.31 4.66

6.45 9.49 4.75

As it can be observed the AGC signal being output into the analog to digital
converter in the interface board prior to the Raspberry Pi 3 is properly within the
range of the converter. Keeping into consideration the range the signal is able to
achieve out of the first stage. This is because the operational amplifier would start
to approach rail voltage and start giving inaccurate gain if the output came too
close to rail. Thus a conservative maximum bellow 10V is appropriate for a 12V
Vcc. This also translated into the input for the analog to digital converter voltage

111

divider. Values for the resistors were selected to provide an input close to the 1V
minimum input, for accuracy purposes, and the 5V maximum of the analog to
digital converter input.

Figure 6.22

6.2.3 PTT Signal

When testing the PTT signal the idea behind it was to check that when the test
power supply or the GPIO pin input from the Raspberry Pi 3 would result in a
voltage in the King KX-170B VHF Aircraft radio input. This was done by running a
3.3V signal through the intended input whilst having the acting ‘switch’ opened to
simulate the Raspberry Pi 3 having an input. Then the test circuit was tested. This
circuit had the acting switch closed and the Raspberry Pi 3 input set to ground, as
the Raspberry Pi 3 would be acting as ground in this specific case.

Figure 6.23

112

When the input is simulated as the GPIO pin the output of the PTT to the King KX-
170B radio is a voltage of 330mV. This is enough to ground the relay inside the
radio and set it into transmit mode.

Figure 6.24

As it can be noted the voltage coming out when using the test voltage supply is
slightly lower than that of the GPIO pin. This is due to the voltage divide caused
by the resistors. This is to ensure that the current going into the Raspberry Pi 3
remains bellow 16mA at all time.

6.3 Interface Board Protoboard Design

During final stages of design after extensive system testing with the bread board
a protoboard was made to create a fully integrated system. This system integration
was then tested to finalize values in each circuit and create a final adaption that
would fit the King 175B VHF aircraft radio.

The protoboard included all interface board complexities:

 Testing push buttons

 LEDs

 3.5mm audio cables (simulating audio jacks)

 TX audio input and output potentiometers

The protoboard was tested thoroughly to create a final PCB design and reduce
costs by allowing less PCBs to be printed as values would be known and no
revisions would be necessary. This was the original intention.

113

Figure 6.25 Interface Board Protoboard

Using the TX audio potentiometers, it was determined that complete injection of
the audio generated by the protobard was fine. This was due to the original circuit
having a gain of 0.5. This was noticed during protobard testing and adjusted to a
gain of ~0.9 resulting in an adequate audio amplitude to inject into the radio.

Using the LEDs it was confirmed that the testing switches for both PTT and Carrier
Detect were fully functional and practical for use in the interface board. The LED
in PTT turned on when the radio was set into transmission mode, but remained off
otherwise. This was true whether the pi, test switch or microphone was used to set
it into transmit mode. The logic of the carried detect LED was one whenever the
radio had an incoming transmission or the switch grounded the comparator. The
LED for wind direction remained off between 0 and ~135 degrees as the voltage
output was below the turn on voltage of the LED, but it still represented a working
circuit as any direction above 135 turned the LED on. The LED in RX audio varied
in intensity as the signal was being pushed through and the TX audio blinked with
audio. This was because the RX audio LED has an offset that keeps it on. But the
injected audio increases the brightness making it flicker but not turn off.

The 3.5mm audio cables were soldered onto the system because it was simpler
than finding 3.5mm jacks and using those, later removed once the testing was
complete for a cleaner more presentable board. These input the audio from RX to
the codec 3.5mm jack and output the codec TX audio into the TX compressor.

114

6.4 Printed Circuit Board

After building all the circuits separately and building a soldered prototype, we built
the first iteration of the printed circuit board. This iteration allowed us to find more
bugs on our circuit that were over looked on the first prototype. In addition, the only
circuit that was not built component by component prior to this first version of the
PCB was the audio CODEC. This circuit was design on the PCB. The images
below show the first PCB before built and the PCB after built.

Unfortunately, the first iteration of the PCB wasn’t perfect. The failure point of the
first iteration of the PCB was the audio CODEC. It was decided to move this circuit
out of the second design and replace it with the actual board used for development.
A comparison between each board can also be seen in the images below as well
as the new placement of components. This new placement of components was
adjusted to give the user the facility to plug components in and out and view the
LEDS in an organize manner as well as isolating the inputs from the radio and
inputs to the pi. The PCB layout follows a user-friendly view like the schematic.

Figure 6.26 PCB Version 1 without components

115

Figure 6.27 PCB Version 1 with components

116

Figure 6.28 PCB Version 2 with components

Figure 6.29 Comparison of PCB Version 1 and PCB Version 2

117

6.5 PCB EagleCAD Wiring

The images below show the board layout of the PCB on EagleCAD. The wiring
was done manually with minimum use of the autorouter function in order to prevent
the use of many drill holes and allow the desired placement and trace thickness
up to the user. The first image of the layout was taken from the first iteration of the
PCB followed by the second iteration of the PCB. Per request of our sponsor some
of the thickness of the traces that conduct the power were adjusted as well as the
headers for the placement of the audio CODEC. This second version still had some
minor bugs that were accessible to minor fixes, as seen on the image. A third
iteration of the board is expected to be designed to have all these minor issues
fixed.

Figure 6.30 PCB Version 1 EagleCad Diagram

118

Figure 6.31 PCB Version 2 EagleCad Diagram

7 Testing

7.1 3.3V Voltage Regulator Testing Procedures

To test the Interface Board 3.3V Voltage Regulator, follow the testing procedure
below.

Process Expected Outcome

Set up the 3.3V regulator with
required components for correct
output. Capacitors and resistors are
the only components needed.
Capacitors connected at the input and
output to prevent oscillation.

No output yet as there is no input
connected

Connect 13.8V input along with
connections to voltage meter or
oscilloscope for measurement
purposes.

Once input is ON, output should be
3.3V

Drop input voltage to 5.1V Voltage output should still be 3.3V

Drop input voltage to less than 5V Output will not be a constant 3.3V

119

7.2 5V Voltage Regulator Testing Procedures

To test the Interface Board 5V Voltage Regulator, follow the testing procedure
below.

Process Expected Outcome

Set up the 5V regulator with required
components for correct output.
Capacitors are the only components
needed. Connected at the input and
output to prevent oscillation.

No output yet as there is no input
connected

Connect 13.8V input along with
connections to voltage meter or
oscilloscope for measurement
purposes.

Once input is ON, output should be 5V

Drop input voltage to 7V Voltage output should still be 5V

Drop input voltage to less than 6V Output will not be a constant 5V

7.3 12V Voltage Regulator Testing Procedures

To test the Interface Board 12V Voltage Regulator, follow the testing procedure
below.

Process Expected Outcome

Set up the 12V regulator with required
components for correct output.
Capacitors are the only components
needed. Connected at the input and
output to prevent oscillation.

No output yet as there is no input
connected

Connect 13.8V input along with
connections to voltage meter or
oscilloscope for measurement
purposes.

Once input is ON, output should be
12V

Drop input voltage to 13.1V Voltage output should still be 12V

Drop input voltage to less than 13V Output will not be a constant 12V

120

7.4 -12V Voltage Regulator Testing Procedures

To test the Interface Board -12V Voltage Regulator, follow the testing procedure
below.

Process Expected Outcome

Set up the interface board by
connecting it to the main 13.8V power
supply

LED’s in interface board should be lit
up to indicate power is running
through the system.

Using a multimeter connect the
positive end to the input and the
negative to ground. Test the input
voltage.

5V should be displayed on the
multimeter.

Using a multimeter connect the
positive end to the output and the
negative to ground. Test the input
voltage.

-12V should be displayed on the
multimeter.

7.5 PTT Testing Procedures

To test the Interface Board PTT Circuit, follow the testing procedure below.

Process Expected Outcome

Turn off the Raspberry Pi 3
microcomputer.

All signals going to the radio should
be silent and the Raspberry Pi 3
microcomputer should be off.

Measure the voltage going into the
KX-170B Aircraft Radio pin 40

The voltage going in should be 13.8V

Press the button on the interface
board labeled “PTT Test”

The LED labeled “PTT” should light up
when the button is pressed

Measure the voltage going into the
KX-170B Aircraft Radio pin 40

The voltage going in should be 0V
There should be an audible ‘click’ as
the PTT voltage in the radio gets
pulled to ground.

Measure the voltage running through
the resistor to the Raspberry Pi 3
GPIO Pin

It should be no larger than 1.2V

7.6 TX Audio Testing Procedures

To test the Interface Board TX Audio Circuit, follow the testing procedure below.

121

Process Expected Outcome

Set up the KX-170B VHF Aircraft radio
with the interface board and signal
generator or the Raspberry Pi 3 as
well

All systems but the anemometer
should be present for testing
procedure

Set the KX-170B VHF Aircraft radio to
a frequency of 123.925MHz

The dial on the KX-170B VHF Aircraft
radio front plate should read 123.92

Farther away in another room or
outside have a receiving radio set to
123.925MHz as well

The other radio should be tuned to the
same frequency as the KX-170B
Radio

Connect the interface board to the
tone generator, or the Raspberry Pi 3
and transmit a tone through it at 4kHz

The audio should go through the
interface board and transmitted out.
The user with the receiving radio
should hear the synthesized audio

Increase the TX signal to 6kHz
The audio should still be just as strong
as when initially transmitted

Increment the TX signal by 1kHz until
the signal is no longer picked up by
the user with the receiving radio

The audio tone should decrease in
signal strength until it becomes in
audible or noise. The low pass filter
should filter anything above ~17.2kHz

7.7 RX Audio Testing Procedures

To test the Interface Board RX Audio Circuit, follow the testing procedure below.

Process Expected Outcome

Set up the King KX-170B VHF Aircraft
radio with the interface board, the
Raspberry Pi 3 and an oscilloscope as
well.

All systems but the anemometer
should be present for testing
procedure.

Set the King KX-170B VHF Aircraft
radio to a frequency of 123.925MHz

The dial on the King KX-170B VHF
Aircraft radio front plate should read
123.92

Farther away in another room or
outside have a transmitting radio set
to 123.925MHz as well.

The other radio should be tuned to the
same frequency as the King KX-170B
Radio

Connect the interface board to the
Raspberry Pi 3 and the oscilloscope to
the analog to digital RX audio in. Then
transmit a signal using the
transmission radio.

The audio should go through the
interface board and pushed into the
raspberry pi with a clearly visible 2.5V
DC offset. This should be visible
through the Oscilloscope

122

7.8 Anemometer Testing Procedures

To test the Davis 7911 Anemometer, follow the testing procedure below. Note the
revised wiring diagram for correct setup.

Process Expected Outcome

Setup the Davis 7911 Anemometer in
a controlled environment with no wind

The Davis 7911 Anemometer should
be upright and components should be
stationary

Set up transistor with resistors at
base, collector and emitter to base.

No output yet as there is no input from
anemometer connected yet

Connect 3.3V input at emitter, ground
at collector resistor. See schematic.

No output yet as there is no input from
anemometer connected yet

Connect input from anemometer at
base and output at collector to
different channels from oscilloscope.

No output yet as there is no input from
anemometer connected yet

Make the following connections:
Black – 3.3V Input
Red – Not Used
Yellow – Wind Speed
Green – Ground

No output yet as there is no input from
anemometer connected yet

Turn 3.3V source on. Spin wind
measuring cups on anemometer
about once every 5 seconds to see
output

3.3V square wave output should be
seen. Base is grounded through reed
switch allowing the 3.3V at emitter
flow through transistor.

Increase the rate of the wind cups
spinning

The faster the cups spin and close the
reed switch every time the more
square wave outputs will be seen in a
shorter amount of time.

7.9 Wind Vane Testing Procedures

To test the Davis 7911 Wind Vane, follow the testing procedure below. Note the
revised wiring diagram for correct setup.

Process Expected Outcome

Setup the Davis 7911 Wind Vane in a
controlled environment with no wind
and point Wind Vane away from the
Anemometer arm

The Davis 7911 Anemometer should
be upright and components should be
stationary

Set up operational amplifier for wind
direction input.

No output yet as there is no input from
wind vane connected yet

Power to op amp should be 12V+ and
12V-

No output yet as there is no input from
wind vane connected yet

123

Make the following connections:
Black – 3.3V Input
Red – Wind Direction
Yellow – Not Used
Green – Ground

No output yet as there is no input from
wind vane connected yet

Connect input and output to
oscilloscope

No output yet as there is no input from
wind vane connected yet

Turn 5V source on. Slowly move wind
vane to adjust direction

Input and output should display as a
change on direction is seen

7.10 Testing Modules on PCB

After testing the components on the breadboard, it was decided to add other
features for future debugging. Multiple LEDs and test points are used are on the
device to be able to have a more accessible and user friendly debugging. The
following table shows the LED and/or test point number to be found on the PCB
and their corresponding device and expected outcome.

Test Point /
LED

Device Expected Outcome
Color /
Name

LED1 Comparator

LED will be ON if:
Comparator output is 3.3V meaning
Carrier Detect is present.

LED will be OFF if:
No Carrier Detect is present.

Green

LED2 AGC

LED will be ON if:
Voltage from AGC is being amplified
and sent to analog and digital
converter.

LED will be OFF if: Misconnection or
no input voltage from AGC.

Red

LED3 RX Audio

LED will be ON if:
Received audio from user is being
processed and then sent to ADC.

LED will be OFF if:
Misconnection or no audio is being
received from user.

White

LED4 Wind Speed

LED will be ON if:
Wind speed is being updated and
sent to be processed.

LED will be OFF if:

Yellow

124

Anemometer is either not properly
connected or there is no change in
the wind speed.

LED5 Wind Direction

LED will be ON if:
Wind direction is being updated and
sent to be processed.

LED will be OFF if:
Wind vane is either not connected
properly or there is no change in
wind direction.

Yellow

LED6 PTT Transistor

LED will be ON if:
PTT transistor connect to 3.3V at
base. Note this 3.3V is not collector.

LED will be OFF if:
Transistor is open; no input is being
received from PTT.

Blue

LED7
Audio
Compressor

LED will be ON if:
There is audio present as output

LED will be OFF if:
No audio being processed or output.

Green

LED8 ADC Channel 1

LED will be ON if:
AGC voltage is being received from
TL084 op amp.

LED will be OFF if:
No AGC voltage is being received
from TL084 op amp.

Red

LED9 ADC Channel 2

LED will be ON if:
RX Audio is being received from
TL084 op amp.

LED will be OFF if:
No RX Audio is being received from
TL084 op amp.

Red

LED10 ADC Channel 3

LED will be ON if:
Wind direction is being received
from TL084 op amp.

LED will be OFF if:
No wind direction is being received
from TL084 op amp.

Red

Test Point 1 3.3V Regulator
Accessible TP to check if 3.3V+
regulator output is correct.

TP1

125

Test Point 2 5V Regulator
Accessible TP to check if 5V+
regulator output is correct.

TP2

Test Point 3 12V Regulator
Accessible TP to check if 12V+
regulator output is correct.

TP3

Test Point 4 3.3V Inverter
Accessible TP to check if 12V-
output is correct from voltage
inverter.

TP4

7.11 Raspberry Pi Testing Procedures

To test the Raspberry Pi’s connection with the interface board, follow the testing
procedure below.

Process Expected Outcome

Power on the Raspberry Pi from the
Interface Board

Red LED on Pi should turn on. Verify
no signal LEDs on the Interface Board
are on

Press the CD Test Button on the
Interface Board three times

Verify that after a few seconds the
PTT LED and the TX Audio LED on
the Interface Board turn on

Press the CD Test Button on the
Interface Board four times, then hold
once more, to simulate a transmit
radio check

Verify that after a few seconds the
PTT LED and the TX Audio LED on
the Interface Board turn on

Connect headphones or speakers to
the Raspberry Pi and once again
press the CD Test Button on the
Interface Board three times

Verify that the Raspberry Pi plays a
wind conditions broadcast with
reasonable values.

7.12 Unit Tests

Because it will be hard to tests most of the “Build WAV File” process on a micro
level, we will have to do most of the testing via message logging and writing
separate testing scripts across the various sub functions the “Build WAV File”
function has. In order to properly explain our testing plan for the sub functions of
this function, you will find that below we have separated the testing plans for the
various sub functions of the system into sections. Each section will include the
testing scripts to be used for that particular sub function, as well as go over any
messages that will be logged to keep track of errors.

Before we go into each sub functions and how they will be tested, it is important to
describe the way that all of the various testing scripts and messages will be linked
back to the main “Build WAV File” function and organized. As for logging and
messaging, there will be a master text file by the name of BuildWavFile.log whose

126

purpose will be to keep track of any error messages that happen across the system
that are related to the “Build WAV File” function and its sub functions. This will be
the acting message hub for all of the testing scripts and sub functions to post error
messages that relate to the “Build WAV File” function.

7.12.1 Clean and Format Passed in Audio Data Testing

Procedures

Testing Scripts

Testing Script Success Condition

Data.test.py

The resulting digital values from the
input file are equal to their respective
digital unconverted values from the
output file

ByteLength.test.py
The number of lines in the input and
out files are the same

Data.test.py
The main goal for testing this sub function is to make sure that the converted and
formatted data that was returned from this function matches up with the input data.
Since the main goal of this sub function is essentially just to make some
conversions, and does not majorly alter the data at all, we can use the opposite
process to convert the formatted data back to see if we get the correct digital value.
The only potential issue here is that this function subtracts 255 from the initial
digital value to compensate for the voltage offset from the interface board used to
push the entire signal into the positive range. Considering both options of adding
the 255 digital value back to the number and then comparing the input value to the
output number, or subtracting 255 from the input number and comparing that to
the un converted output value, there really isn’t any major differences between
them. We ended up choosing to subtract the 255 digital value, to compensate for
the 3V digital offset, from the initial value and comparing that to the output data
because this allows us to check and validate the conversion steps essentially
halfway between the raw data form and the outputted data. While not totally
different from the first option, this does provide a bit more credibility to the test due
to the fact that we aren’t simple just reversing the logic of the initial function we are
testing. If we went with the first option and based the test on the reversal of the
initial function being tested and the logic of the function was wrong, simply
reversing this process would lead to a test function with equally wrong logic. This
first test will be to validate that the conversion from the raw data to the format we
need for the WAVE file did not corrupt the value of the data even if it is represented
in a different form.

The second test we will have for this sub process, will be to check the byte sizes
of both the input file, containing the raw audio samples, and the output file,

127

containing the converted and formatted audio data for the WAVE file. Even though
the input data file contains 10 bit digital values while the output file contains the
little endian 2’s complimented representation of the sample, which is 2 bytes in
length, we can essentially make sure that the number of lines in the input file match
the number of input lines in the output file. This is because each line, no matter
which file you are reading from, represents one sample, so the line numbers
effectively represent the number of samples contained in that file. While this is a
simple test, it is important because we need to make sure that no samples we
missed or left out of the conversions for any reason. Losing a sample could have
drastic effects on the resulting output audio and can corrupt the resulting WAV file
if the WAV file expects more or less bytes than is actually store in the data chunk
of the file. This test will help us avoid file corruption due to miss calculated byte
sizes in either the input or output audio data.

As for any error messages this sub process may need to pass on to the
BuildWavFile.log, we mainly need to focus on file input and output errors as well
as any variable typing errors. Because file input and output is how we are receiving
our input audio data as well as outputting our formatted audio data from this
function, any file input or output errors need to be classified as critical errors to the
system. Thus, any such file input or output errors need to be passed to the
BuildWavFile.log file. Since the input and output files will always be named the
same thing, and overwritten for each iteration of the “Build WAV File” function, the
error messages we send to the log file can be the same for any file operational
errors that are of the same type. For example, and errors pertaining to the opening
of a file may be formatted as “ERROR – unable to open file: <filename>”, where
<filename> will be replaced with the file name of the file that failed to open. These
error messages can be seen in the complete error message table below. Likewise,
since this sub processes uses so many data conversion and formatting methods,
we need to make sure that we did not encounter any errors when executing these
critical functions. Upon encountering one of these errors we will send a message
to the error log. Upon the failure of this sub routine to open the error messaging
log, the error will be send to the standard output of the raspberry pi.

Error Messages

Error Type Error Message

Cannot Open Input Audio File
“ERROR – unable to open file:
audioIn.txt”

Cannot Open Output Audio File
“ERROR – unable to open file:
audioout.txt”

Cannot Read From Input Audio File
“ERROR – unable to read from file:
audioIn.txt”

Cannot Write To Output Audio File
“ERROR – unable to write to file:
audioIn.txt”

Error When Converting To 2’s
Compliment

“ERROR – Unable to convert sample
to 2’s Compliment”

128

Error When Converting to Short
Integer and Little Endian Format

“ERROR – Unable to convert sample
to Short Integer and Little Endian
Format”

7.12.2 Build Data Chunk, Build Format Chunk, and Build

Header Chunk Testing

Testing Scripts

Testing Script Success Condition

Feilds.test.py
All fields are of the required byte
length and any static/predefined fields
values are correct

ChunkSizes.test.py

The number of bytes in each chunk is
equal to the pre/defined static chunk
size or the chunkSize field of the
corresponding chunk

DataLength.test.py

The number of bytes after the first 8
bytes of the data chunk is equal to the
number in the chunkSize field of the
data buffer

Feilds.test.py

The goal of this test is to verify that the all chunks in the resulting WAV file contain
the correct fields and that any field with a pre-determined value has been set to
that value. This test is important because it will determine if the resulting WAV file
from the “Build WAV File” process is a valid wav file and that all fields in each
chunk are populated. This will make sure no fields are missing. If this test fails,
then it will pass a message to the BuildWavFile.log file with more details on what
error was experienced. These messages are accounted for below.

ChunkSizes.test.py

There are a couple of main goals to this test script, however it can be said that this
test script validates whether each chunk, as well as the file itself, is of the correct
size recorded by the chunkSize in each chunk. While for the data and format
chunks, this just means reading the value in the chunkSize fields and validating
the chunks are in fact that length in bytes, the header chunk requires that the entire
file length be check and will be kept track of as the other two size checks are
happening. This actually works out in our favor as we have to essentially read the
file byte by byte to get to the fields we need to get to. Lastly it is important to note
that the Header chunk is always 12 bytes in length, so we will validate this first in
this test script.

129

DataLength.test.py

While the data size is validated in the testing for the “Clean and Format Raw Audio
Data” sub process, we need to again validate that the number of bytes occupied
by the data section of the wave file indeed match up to the number store in the
data chunk’s subChukSize field. This is a check also being tested in the
ChunkSizes.test.py testing script, but here we will make sure that the number of
bytes per sample is the same as the number in the format chunks BlockAlign field,
which tells any program reading the wave file how many bytes are in each “block”
or sample to be read. This is especially important when reading multiple channels
of audio since the number of bytes per sample is doubled to cover both the right
and left channel. However, in this case we just need to make sure that the byte
size here matches the number of bytes for each sample in the data section.

Error Messages

Error Type Error Message

Incorrect Chunk ID
“ERROR – incorrect chunk id in the:
<chunk> Chunk”

Missing Field
“ERROR – Missing the <chunk field>
in the: <chunk> Chunk”

Invalid Field Value
“ERROR – incorrect field value in the:
<chunk> Chunk. Expected <expected
value>. Received <received value>”

Chunk Size does not match value in
chunkSize field

“ERROR – Size of: <chunk> Chunk
does not equal read chunk size of
<chunkSize field value>”

7.13 System Testing Procedures

To test the overall system once each individual component has been tested, follow
the testing procedure below.

Process Expected Outcome

Connect the Davis 7911 Anemometer
to the Interface Board

They will be connected

Connect the Radio to the Interface
Board

They will be connected

Connect the Monitor and Keyboard to
the Raspberry Pi

They will be connected

Connect the Raspberry Pi to the
Interface Board

They will be connected

Connect the Power Supply to the
Interface Board

The system should power on. All
power LEDs, including the Raspberry
Pi’s red LED, should turn on

130

Set the Radio to a channel that is not
used in the immediate vicinity

Radio should be set to a new channel

Set the wind vane to its north position
and verify the wind cups are stationary

N/A

Key the handheld radio mic three
times

Verify wind conditions are broadcast
with values of zero degrees and zero
knots

After 60 seconds, move the wind vane
to its south position, 180 degrees from
before

Verify that a wind conditions update is
broadcast with the values of 180
degrees and still zero knots

After 60 seconds, rotate the wind cups
as fast as possible for at least five
seconds

Verify that a wind conditions update is
broadcast with the values of 180
degrees and greater than zero knots

After 60 seconds, key the handheld
radio mic four times

Verify a transmit radio check prompt is
broadcasted

After 60 seconds, key the handheld
radio mic four times

Verify nothing happens for the 60
seconds, and after the four keys a
transmit radio check prompt is
broadcasted

Key the handheld radio mic and speak
into the radio, once done speaking,
unkey the mic

Verify the message just spoken into
the handheld radio is broadcasted and
followed by a power level broadcast

After 60 seconds, key the handheld
radio mic three times

Verify wind conditions are broadcast

After 60 seconds, key the handheld
radio mic one time

Verify nothing happens

After 60 seconds, key the handheld
radio mic two times

Verify nothing happens

After 60 seconds, key the handheld
radio mic five times

Verify nothing happens

131

8 Management

8.1 Milestones

Figure 8.1 Milestone Chart

Above is a short list of some of the main milestones our team had. It includes when
the team completed and tested each revision of hardware made as well as when
each main software function was implemented and tested.

Milestone Date Completed

Team Formed 5/13/2016

Project Decided 5/22/2016

Specifactions Decided 6/1/2016

Breadboard Completed 7/15/2016

Breadboard Tested 7/20/2016

Breadboard Version 2 Completed 7/30/2016

Breadboard Version 2 Tested 8/15/2016

Protoboard Completed 9/15/2016

Protoboard Tested 9/16/2016

Protoboard Version 2 Completed 10/22/2016

Protoboard Version 2 Tested 10/26/2016

PCB Completed 11/5/2016

PCB Tested 11/6/2016

PCB Version 2 Completed 11/25/2016

PCB Version 2 Tested 11/28/2016

Main Loop Completed 10/2/2016

Main Loop Tested 10/24/2016

Wind Direction Function Completed 10/5/2016

Wind Direction Function Tested 10/10/2016

Wind Speed Function Completed 9/22/2016

Wind Speed Function Tested 10/1/2016

System Tested 11/28/2016

Web Server Implimented 10/30/2016

132

8.3 Budget and Finances

Our sponsors have provided us with a $750 budget for approved parts. Below is a
list of items we purchased and their cost as well as which member bought them.
The cost of these items, if they should exceed our $750 budget will be absorbed
evenly by the team members.

Figure 8.2 Team Budget as of 12/5/2016

Item Purchased Quantity Price Shipping Cost Total Purchase Purchased by

PCB V1 10 4.09$ 18.05$ 58.95$ Carmen

PCB V2 10 4.09$ 58.85$ 99.75$ Carmen

Components 1 30.51$ -$ 30.51$ Carmen

Components and Codec 1 34.27$ 49.83$ 84.10$ Francisco

Components 1 61.68$ 11.35$ 73.03$ Francisco

Components 1 6.39$ -$ 6.39$ Francisco

Raspberry Pi 3 1 36.79$ -$ 36.79$ Jordan

Pi Heatsinks 1 5.35$ -$ 5.35$ Jordan

USB sound card 1 5.99$ -$ 5.99$ Jordan

Pi Breakout Testing Kit 1 12.99$ -$ 12.99$ Jordan

MicroSD Card 1 18.93$ -$ 18.93$ Jordan

Codec 1 19.00$ 13.99$ 32.99$ Jordan

Codec 1 19.00$ 9.00$ 28.00$ Jordan

MCP3008 2 8.50$ 2.56$ 19.56$ Mason

Codec Chip 1 4.25$ 13.00$ 17.25$ Mason

530.58$

Group Member
Percent of

final cost

Contribution

amount

Carmen 36% $ 189.21

Francisco 31% $ 163.52

Jordan 27% $ 141.04

Mason 7% $ 36.81

Total Cost

133

8.4 Team Member Time Management

Meetings /

Learning /

Research

Productive

Effort / Report

Writing

Meetings /

Learning /

Research

Productive

Effort / Report

Writing

Meetings /

Learning /

Research

Productive

Effort / Report

Writing

Meetings /

Learning /

Research

Productive

Effort / Report

Writing

1 5/29/2016 1 0 1 0 1 0 1 0

2 6/5/2016 4 2 4 2 4 2 4 2

3 6/12/2016 3 3 3 2 8 1 5 3.75

4 6/19/2016 5.5 2.5 12 4 4 4 5.5 7

7 6/26/2016 1 1 10 5 2 6 6 6

8 7/3/2016 4.5 10 3 3.5 3 3 10 1

9 7/10/2016 5 8 5 4 1 5 5 8

10 7/17/2016 4 9.5 2.5 6 3 2 1 5.5

11 7/24/2016 3 3 6 8 5 12 2 5

12 7/31/2016 5 12 3 8 4 5 5 6

13 8/7/2016 2.5 4 2.5 4 2.5 4 2.5 4

14 8/14/2016 0 0 8 7 4 2 0 0

15 8/21/2016 0 0 8 3 4 6 0 0

16 8/28/2016 1 5 7 5 7 3 7 1

17 9/4/2016 6 1 5 4 4 8 4 1

18 9/11/2016 4 7 4 6 2 3 4 7

19 9/18/2016 5 7 4 2 2 2 5 3

20 9/25/2016 8 2 7 3 5 2 8 8

21 10/2/2016 7 2 8 7 2 8 4 7

22 10/9/2016 2 3 7 7 1 7 7 7

23 10/16/2016 6 7 5 1 1 1 6 4

24 10/23/2016 4 6 7 4 2 8 8 5

25 10/30/2016 4 8 5 8 8 5 2 8

26 11/6/2016 4 3 6 5 5 8 1 3

27 11/13/2016 8 4 6 4 5 1 5 8

28 11/20/2016 4 6 4 4 7 2 6 2

29 11/27/2016 8 8 4 4 7 1 5 1

30 12/4/2016 2 1 4 7 3 7 7 2

111.5 125 151 127.5 106.5 118 126 115.25

241.25

Week
Week

Ending Date

Jordan Carmen Mason Francisco

Time Spent

Total Time 236.5 278.5 224.5

134

9 Appendix

9.1 Datasheets

9.1.1 TPS 63700 Voltage Inverter

http://www.ti.com.cn/cn/lit/ds/symlink/tps63700.pdf

9.1.2 TL084 Op-Amp

http://www.ti.com.cn/cn/lit/ds/symlink/tl084.pdf

9.1.3 LM234 Op-Amp

http://www.ti.com/lit/ds/symlink/lm134.pdf

9.1.4 2N4403 PNP Transistor

https://www.fairchildsemi.com/datasheets/MM/MMBT4403.pdf

9.1.5 2N4401 NPN Transistor

http://www.tme.eu/en/Document/f8d055de9406c1d3890391b8977313b3/2N4401
BU.pdf

9.1.6 2N3820 FET

http://www.radiotechnika.hu/images/2N3820.pdf

9.1.7 BC546 NPN Transistor

http://www.onsemi.com/pub_link/Collateral/BC546-D.PDF

9.1.8 LM393 Comparator

http://www.ti.com/lit/ds/symlink/lm2903-n.pdf

9.1.9 LM124W Op-Amp

http://www.st.com/content/ccc/resource/technical/document/datasheet/60/2a/ed/7
f/ec/7e/4e/5c/CD00005087.pdf/files/CD00005087.pdf/jcr:content/translations/en.
CD00005087.pdf

9.1.10 MCP3008 Analog to Digital Converter

https://cdn-shop.adafruit.com/datasheets/MCP3008.pdf

9.1.11 2N5458 JFET

http://www.onsemi.com/pub_link/Collateral/2N5457-D.PDF

135

9.1.12 78L12 Voltage Regulators

http://www.ti.com.cn/cn/lit/ds/symlink/lm78l05.pdf

9.1.13 AC90-50D

http://www.faa.gov/documentLibrary/media/Advisory_Circular/AC90-50D.pdf

9.1.14 Raspberry Pi 3 Model B

https://www.inet.se/files/pdf/1974044_0.pdf

