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1 Executive Summary 

When a pilot chooses to fly there are a few things that the pilot must know for 
certain. Before a pilot takes off they should know that their microphone, radio, and 
headset are operational. This is so that they can communicate with other pilots in 
the area in order to avoid deadly collisions and for communicating with Air Traffic 
Control at another airport soon after takeoff. Also, as they come into land, a key 
piece of information to know is the wind direction, wind speed, and gusts at the 
airport they are landing at. This is because pilots always need to land into a 
headwind to shorten their landing distance. And if a crosswind exists (and they 
usually do) the pilot needs to know so they can choose the best runway to land on. 
 
Usually Fixed Base Operators (FBO) are the ones to relay this information to the 
pilots over the radio, but some airports do not have FBOs. This creates a problem 
for the pilots who need that very information. One solution to try to mitigate this 
issue at such airports is a windsock. A windsock is a light and flexible cone of fabric 
mounted on a mast, usually somewhere along the airstrip of an airport. Windsocks 
let the pilots know some of the important weather readings, such as wind direction, 
but they are small and cannot be seen until the aircraft is very close to the airport. 
On the other hand, there are some automated systems currently on the market 
that perform task such as broadcasting weather conditions and transmit radio 
checks, but they are costly and not suited for smaller airports. 
 
The proposed project is a low-cost system that satisfies these two basic needs. 
This system needs to broadcast important weather information when prompted by 
pilots in the area. For example, when the system is prompted, the system will 
broadcast a weather report that includes the latest recorded wind direction and 
wind speed as well as gusts. This system also needs to perform a transmit radio 
check for any pilot that consists of recording the transmission from the pilot and 
playing it back so the pilot knows exactly how operational their equipment is. 
Therefore, this can be classified as an “Auto Fixed Base Operator” for small 
airports. This “Auto Fixed Base Operator” would act as a hub of communication for 
these small airports that do not have a dedicated FBO or weather station. This 
system would provide a source from which any pilot can obtain crucial weather 
information or perform any radio communication checks they need prior to taking 
off and landing their aircrafts. We call it the AirBud. 
 
Our goal is to use our technical experience to connect a weather station and VHF 
radio through an interface board to a microprocessor that can process all of the 
necessary information. Using these components, we will build a system that can 
assist pilots in taking off and landing safely, all while being configurable and cost-
effective.  
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2 Project Description 

2.1  Project Justification and Motivation 

The idea for the AirBud came to fruition when our sponsor Michael Young, 
professor at UCF, started flying out of Orlando Apopka Airport where there is no 
control tower or FBO. He sought out products that would fit his needs to broadcast 
weather conditions and perform radio checks and found a few. But products he 
found would cost over $75,000 to install and maintain. He came to our senior 
design class to pitch the project to us and we accepted the challenge to build a 
system for his home airport. 
 
Our motivation for this project is the safety of pilots and passengers at these 
smaller airports with no FBO. When pilots aren’t sure of wind conditions they do 
not know which runway to land on. The airports that don’t have a dedicated FBO 
usually don’t have the financial means to fund the expensive automatic weather 
systems on the market. Our system would become the model for a low-cost 
effective solution. 

2.2 Goals and Objectives 

Our goal for this project is to create a low-cost, easy to maintain system for small 
airports that provides the basic communication services offered by an FBO. The 
system will be in a hangar at Apopka Airport and when prompted by pilots, through 
transmission radios, perform the tasks of broadcasting wind conditions and 
transmit radio checks. Once we had the broad goal of our project defined, we 
decided on some main objectives to determine the success of our project by. 

2.2.1  Wind Conditions Report 

The wind conditions report is one of our main functions of the system. When the 
user/pilot keys the mic a specified number of times, the system should broadcast 
wind conditions. This wind conditions report should be accurate within ±1 knot and 
±5 degrees. It will need to check if the channel is occupied and only broadcast 
when the channel is unoccupied.  
 
Another feature of this function is to broadcast an updated weather report if the 
conditions change more than a specified amount. For example, if the system 
broadcast that winds are 5 knots at 120 degrees, and they change to 10 knots or 
150 degrees, the system will broadcast the new wind conditions so that the pilot is 
always up to date with the most current and accurate conditions. 
 
This also touches on the Crosswind Alert the system will have. A crosswind is 
when winds blow near perpendicular to a runway, and this causes makes landing 
more difficult. Our system will detect when a crosswind exists and broadcast an 
alert. The system should also announce when a runway is “favorable” to land on. 
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A pilot wants to land into headwind so the length of their landing is shorter. If the 
system detects winds are more than, say, 5 knots and they are in the direction of 
a runway, the system should announce that that runway is favorable to land on. All 
specified parameters discussed in this and following sections are given by the user 
and discussed more in the “Web Interface” below. 

2.2.2  Transmit Radio Check 

The second main function of our system is a Transmit Radio Check. Before a pilot 
takes off, they want to ensure that their mic, radio, and headset work so they can 
communicate with Air Traffic Control (ATC) and other pilots. Normally, the pilot 
would contact the FBO and the FBO would respond with a radio check and wind 
conditions. Our system will be used at an airport without an FBO. When the user 
keys the mic a specified number of times, the system should prompt the user for a 
Transmit Radio Check. The system will listen to what the pilot says, and play it 
back exactly how it was heard and then give the power level of the transmission. 
This way the pilot can verify their mic and radio are operating normally. During this 
process, the system will verify that the channel is not occupied before transmitting. 

2.2.3  Artificial Intelligence 

Both main functions of the system will use the microcomputer as the driving force 
using software to determine what actions are performed and when, which can be 
viewed as a form of AI. The microcontroller of choice should have all code written 
on it and use that as the logic for the system. It should be a “headless” system that 
does not need any setup process, meaning when the microprocessor has power, 
the software is running. The microcontroller will take input from the GPIO pins on 
the board and output in similar fashion. The microcontroller should also be able to 
act as a database in order to store and log previous weather broadcasts and 
transmit checks. Thus, the microprocessor should have access to a good amount 
of flash storage making the system run quickly and effectively. All of this will be 
controlled by the AI to determine what actions to take and what to broadcast. Our 
options and selection for a microprocessor are further discussed in Section 3.2.1. 

2.2.4  Printed Circuit Board (PCB) Interface 

In order to interface the radio base station and the microcomputer we will need to 
design and build custom circuitry and ultimately fabricate a PCB. This PCB will 
have all necessary inputs from the radio base station and convert them into usable 
signals for the microcomputer. For example, the radio operates on 13.8V but a 5V 
and 3.3V power sources are needed. The PCB will have these power supplies. In 
turn, it will also create usable signals for the radio that come from the 
microcomputer. The wind sensors would also be connected to the PCB and the 
data processed by the microcomputer. 
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2.2.5  Web Interface 

Our device will also be a local web server that serves the function of a graphical 
interface that the user can get information from the system. The user will be able 
to specify any parameter and adjust the system. For example, if the user wants to 
change the number of clicks for the weather report, they will be able to change that 
from the web interface. This interface will also show a graphic of the runway, a 
compass overlay, and the wind conditions so that the user can get a graphical 
representation of the current weather situation like what is shown in Figure 2.1. 
The user should be able to type in the IP address of the microcomputer and then 
access the web interface within a small range of the system. 

 

Figure 2.1 GUI Example 
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2.3 Product Specifications 

 The system shall use a power supply, radio, anemometer, and 
microcomputer. 

 The system shall broadcast the current weather conditions when the pilot 
keys the mic with the specified parameters. 

 The system shall update the pilot and broadcast the current wind conditions 
if they change outside of the chosen parameters. 

 The system shall perform a “Comm Check” when the pilot keys the mic with 
the specified parameters that does the following 

o Prompts pilot for Transmit radio check 
o Records the audio from the pilots comm radio 
o Plays back what is heard 
o Reports the power level of the received signal 

 The system shall allow the user to change any parameter below. 
o Carrier Dwell Time (ms): min & max  
o Interval Period between Carriers (ms): min & max 
o No. of clicks for Weather report 
o No. of clicks for Comm radio check 
o When to report gusts over steady winds (kts)   
o When to report variable winds (degree variation)   
o History time for variation (secs) 
o When to announce UPDATE: deg change (deg.) & wind change (kts) 
o Wait time after last report to announce UPDATE (minutes) 
o Runway Headings (degrees) 
o When to announce CROSSWIND WARNING: wind speed (kts) and 

degrees min and max (degrees) 
o When to announce WINDS FAVOR runway choice #1: wind speed 

(kts) and degrees min and max (degrees) 
o When to announce WINDS FAVOR runway choice #2: wind speed 

(kts) and degrees min and max (degrees)  

 The system shall have a web IP graphical interface from which the user can 
read the current winds and make parameter changes. 

 The system shall announce crosswind warnings if they are present. 

 The system shall announce a favorable runway if conditions fall within 
chosen parameters. 

 The system shall not broadcast if the radio channel is occupied. 

 The system shall operate on the airports UNICOM frequency. 
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2.4 System Description 

 

Figure 2.2 System Block Diagram 

The block diagram above shows the overall system which is comprised of five main 
components; the power supply, the VHF aircraft radio, the interface board, the 
microprocessor, and the anemometer. Every component will be connected to the 
central interface board for everything from power distribution to data transfer. The 
items and their specifications are listed below. 

2.4.1  Power Supply 

The power supply will be a 13.8V 5 Amp power supply.  

2.4.2  VHF Aircraft Radio 

The VHF Aircraft Radio our system is using is a KX-170B, a solid-state 
NAV/COMM transceiver manufactured by King in the mid-1970s. It features 720 
COMM frequencies and was an industry standard for many years due to its 
reliability and dependability.  
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Figure 2.3 King KX-170B Radio 

2.4.2.1  Avionics Communication Standards 

Because AIRBUD is going to be a repurposed VHF Aircraft Radio there is a specific 
set of communication protocols, set by the Federal Aviation Administration, that 
need to be accounted for before any transmission is used. These standards dictate 
the hardware design, from which signals need to be taken into account prior to 
transmission to the output frequency of the radio. In the FAA’s “REQUIREMENTS 
FOR 760 CHANNEL VHF RADIO FOR AERONATICAL OPERATIONS” there are 
many UNICOM broadcast frequencies that can be used by the KX-170B Radio. 
 

Frequency Range (MHz) System Purpose 

122.700-122.725 UNICOM 
Uncontrolled Airport and 
Aeronautical Utility 

122.800 UNICOM Uncontrolled Airport 

122.950 UNICOM 
Airport with full time ATCT of 
full time FSS 

122.975-123.000 UNICOM Uncontrolled Airport 

123.050-123.075 UNICOM Uncontrolled Airport 

136.100-Up UNICOM or AWOS For Future Use 

 

2.4.3  Interface Board 

The Interface PCB Board will be a custom made PCB board used to communicate 
between the KX-170B VHF Aircraft Radio, Raspberry Pi 3 Model B, and Davis 
7911 Anemometer. This interface board will also be responsible for power 
distribution to all all circuits except the Raspberry Pi 3. As well as be prepared for 
individual signal testing without the radio at hand. 

2.4.4  Microprocessor 

The microprocessor our system is using is a Raspberry Pi 3 Model B. 
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2.4.5  Anemometer and Wind Vane 

The anemometer our system uses is a Davis Instruments 7911 Anemometer. It is 
a component of the Weather Monitor II and Weather Wizard III, both of which are 
complete weather stations also manufactured by Davis Instruments. The 7911 
Anemometer features 3 polycarbonate wind cups to measure wind speed and a 
UV-resistant ABS plastic wind vane to measure wind direction. It comes with a 40-
foot long, 26 AWG cable that ends with an RJ-11 connector. It can measure wind 
speeds up to 173 knots (200 mph) with a 1 knot resolution and a ±5% accuracy. It 
can also measure wind direction from 0 degrees to 360 degrees with a 1-degree 
resolution and a ±7% accuracy.  

2.4.6  Monitor and Keyboard 

These peripherals will be connected to and used by the Raspberry Pi. They can 
be of any variety as long as they are connected through via HDMI cable for the 
monitor and USB for the keyboard. They will be used to interact with the Raspberry 
Pi and view or modify code and graphical user interfaces. 

2.5 Design Constraints and Standards 

2.5.1  Time Constraints 

This project will be a complete working product by the end of Senior Design II in 
Fall 2016. This creates a limited timeframe for the team to work with. The total time 
for this project is about 28 weeks, and to develop, design, build, and test a system 
of this nature will take diligence to complete in that amount of time. The plan is to 
have a working prototype at week 11, at the end of Senior Design I. This in and of 
itself is a lofty goal and requires teamwork and persistent hard work. 

2.5.2  Budget Constraints 

The team is comprised of four college students with limited incomes, which limits 
the solutions, but also provides motivation to make this as low-cost of a system as 
possible. Our primary sponsor has provided us with $250 towards our project and 
that has been set as the target cost for the entire system. Another sponsor has 
offered an additional $500 past the primary sponsor’s initial budget. If the need 
arises, the team can use up to $750 before having to use personal funds. This 
provides us with a good financial base to build our project on, but without having 
unlimited funds, the team will have to be mindful of the limited budget. 

2.5.3  Related Standards 

Below are sections dedicated to standards that are a part of our project at this 
point. 
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2.5.3.1  USB 

USB, short for Universal Serial Bus, was developed in the 1990s and standardized 
cables, connectors, and communications protocols used in a bus for 
communication between electronic devices. Many microcomputers come with USB 
ports which are usually USB 2.0 HSIC. HSIC, short for High-Speed Inter-Chip, 
eliminates the analog transceivers found in normal USB and was adopted in 2007. 
Utilizing HSIC allows the USB to use 50% less power and 75% less board area 
and have a throughput of 480 Mbit/s. 

2.5.3.2  SPI 

Serial Peripheral Interface (SPI) bus is a synchronous serial communication 
method over small distances primarily used for embedded systems. SPI was 
developed by Motorola and quickly became a de facto standard among the 
industry. SPI devices communicate in full duplex mode using a master/slave 
architecture as long as there is only one master. In our case, the microcomputer 
will act as the master and the AGC voltage, RX audio, and wind direction. This bus 
will be helpful as it can provide the microcomputer a bit stream of data to interpret. 

2.5.3.3  WAVE File 

We will be using the WAVE format standard for storing audio data. The WAVE file 
standard was introduced as a joint standard from the IBM Corporation and the 
Microsoft Corporation in the “Multimedia Programming Interface and Data 
Specifications 1.0” standard document released in August of 1991. The WAVE file 
standard in particular was introduced as a substandard of the RIFF, or the 
Resource Interchange File Format, standard for storing multimedia. While old we 
chose this standard because it is the most common form of uncompressed audio, 
and is recognized across all systems as well as multiple audio centered programs. 
By using the WAVE format standard, we did not have to commit to a certain form 
of audio compression standard. This will allow us to directly interface with the raw 
audio data, as well as compress the data using any of form of audio compression 
standard in the future if we feel we need to compress the data.   
 
The WAVE file format standard organizes the data it stores using what the RIFF 
standard defines as “chunks”. Each of these chunks, while having no particular set 
order to where they are located within the file, contain their own specific sets of 
fields and parameters. For the WAVE file format, the standards indicate that there 
are only three chunks that are required for any WAVE file; these three chunks 
include: the Header chunk, the Format chunk, and the Data Chunk. While there is 
no set order for these chunks, the adopted standard is to write each of the chunks 
in the order they were introduced above. This allows for readability, and the ability 
for programs to know where to look for certain information without the need of 
including more header information about where data is located. This reduces the 
file size and the speed in which the file can be processed.  Two optional chunks, 
the List chunk and the Info chunk, can be included in a WAVE file to document the 
order in which the various chunks appear in the current WAVE file. These two 
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chunks are usually place right after the Header Chunk and are only included for 
compatibility with software that did not follow the suggested chunk order adopted 
by the industry.  
 
Each of the required chunks outline the basic needs of any multimedia player. The 
first is Header Chunk which specifies the multimedia format standard used by the 
file as well as the particular substandard of multimedia used. In the case of the 
WAVE format standard, the RIFF standard for multimedia, and the WAVE 
substandard are always included in the Header chunk. Along with these two fields 
the Header chunk contains the size (in bytes) of the rest of the file. The next 
required chunk, the Format chunk, is uses to specify the format in which the WAVE 
file was being recorded. Along with the standard chunk id and chunk size that 
outlines which chunk is being read and how large the chunk is, these fields are 
almost all variable and include the sampling rate, byte rate, number of channels, 
and bit resolution used to record the audio data.  The only other major field to note 
that is included in the Format chunk is the Audio Format field which is used to 
specify what audio recording standard is being used to record the data. Because 
we are using an Analog to Digital converter to sample the audio we are recording, 
we will use the Pulse Code Modulation, or PCM, standard or audio recording. 
Lastly the WAVE file format standard requires the data chunk which is responsible 
for storing the raw audio data sampled in the audio format specified in the Format 
Chunk. This data is encoded in two’s compliment format and then stored in the 
Little Endian format. 

2.5.3.4  Pulse Code Modulation 

We will be using the Pulse Code Modulation audio format standard for recording 
audio data. This standard is used to digitally represent the analog audio data being 
recorded. We chose to use the PCM standard for recording audio data, as it directly 
coincides with how we will be receiving data from the analog to digital converter. 
The PCM standard requires taking a sample of an analog audio signal and 
representing it using a decimal number. Because most analog to digital converters 
use PCM to sample analog data, we will be using this standard to record audio 
data in the File Format standard we chose to store it. 

2.5.3.5  Radio Communication Phraseology/Techniques – P-8740-47 

One very important aspect of working with aircraft radio and information 
communication is using the proper terminology. Communication in the avionics 
world is drastically different that of every day. This is due to the large amount of 
noise that a pilot can experience while in the cockpit. For this same reason different 
information has different methods of communication in avionics communication.   
 
When wind direction and wind speed are being communication it is important to 
take note that each number must be announce in order. This same process applies 
to multiples of instances in aircraft communication, but wind speed and direction 
are the ones that the system will be communicating. 
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Information Being 
Relayed 

Example 
Message Content 

Non-Avionic 
Pronunciation 

Avionic 
Pronunciation 

Wind Direction 135º One hundred and 
thirty-five degrees 

One three five 
degrees 

Wind Speed 30 Kts Thirty knots Three zero knots 

 
As shown the information being relayed is done so in individual numbers. This is 
to avoid misinformation in the message. The reason is because one 
misunderstanding in the information between system and user can result in the 
pilot using the wrong landing direction, and that can have dangerous, and even 
lethal results. 

2.5.3.6  Traffic Advisory Practices at Airports Without Operating Control 

Towers – 90-42F 

The Traffic Advisory Practices at Airports Without Operating Control Towers 
defines AIRBUD as a UNICOM system, under the guidelines that it is a 
“nongovernmental air/ground communication station which may provide 
information at public use airports.” (Traffic Advisory Practices at Airports Without 
Operating Control Towers, § 4 (1990). Print.)  
 
In this standard is it state that UNICOM stations can provide wind direction and 
wind speed information to pilots upon request. Regardless if the UNICOM station 
shares the same operating frequency as the Common Traffic Advisory Frequency, 
CTAF. This is important because in small airports like the one AIRBUD will operate 
in the CTAF can common be assigned to a designated UNICOM frequency 
operating range. This is ideal for a small airport as the small amount of air traffic 
can be managed by commercial systems like AIRBUD, but in larger airport where 
the CTAF is different from the UNICOM frequency this can present itself a 
challenge as the pilot would have to switch between frequencies to communicate 
with the UNICOM system.   
 
This standard also calls for communication with UNICOM stations of at least 10 
miles from the airport the station is in. This forces out system to be able to operate 
at such distances in order to comply with standards. 
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3 Background Information 

3.1 Existing Products 

There are products currently on the market that meet or exceed our product 
requirements. They are autonomous or unmanned control tower like services that 
provide pilots with necessary information like the weather conditions and radio 
checks our system will provide. These products usually provide way more services 
for the pilots like monitoring traffic in the airspaces and broadcasting that 
information as well. Also, there is the more traditional approach of having a 
dedicated FBO at the airport in question. These are all fine mitigations to the issue 
of getting necessary information while piloting an aircraft, but they all have a major 
flaw; cost. These systems have a high acquisition cost and some also require a 
maintenance cost. This can be a justified cost for airports that either really need 
the information for air traffic such as remote airports for rescue missions or supply 
drops, or smaller international airports that don’t have enough air traffic to justify 
the cost of an entire control tower. But for the small regional airport of Apopka, 
these options are just too expensive. 
 

 

Figure 3.1 Potomac Aviation Micro Tower 

The most related similar product is the Potomac Aviation Micro Tower (Figure 3.1). 
The Micro Tower is an all-in-one system that operates on the area’s CTAF 
frequency (Usually UNICOM) and provides the same core services that our system 
will provide. The Micro Tower can broadcast wind conditions, altimetry, visibility, 
and runway advice. The Micro Tower can also perform the same comm check our 
system will have by recording and playing back a pilot’s transmission and giving 
the power level of that transmission.  
 
Where this system exceeds is its AI capabilities with all that information. For 
example, if the Micro Tower detects an occupied airspace, it can make its 
messages shorter, as to not take up too much time in the broadcast so other pilots 
can communicate when necessary. Also, if the visibility is greater than 10 miles, 
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the Micro Tower won’t broadcast that with the weather advisory message. The 
other benefit of this system is how it’s powered. The Micro Tower is completely 
solar powered, meaning it can be set up anywhere in the world and not have to 
rely on a power source. These features are why there are 150 Micro Towers set 
up in the world with 100 of those in the United States.  
 
For many rural airports or landing sites, this is an optimal solution. Places that don’t 
necessarily need or can’t afford the multiple thousands of dollars cost of dedicated 
weather and broadcasting equipment can use this and not have to worry about 
finding power sources or network connectivity. Where the Micro Tower fails 
Michael Young’s needs is the cost. When Young inquired about the Micro Tower, 
the quoted price for the product was well over $75,000. This was way too much 
money to spend at an airport such as Apopka with as little air traffic as it has, 
especially for one individual, which is why we are creating an incredibly more cost-
effective solution. 
 
Overall this solution far exceeds the needs of a small airport such as the one in 
Apopka, and the price is similarly outlandish when the fact that they are mostly 
self-funded is taken into consideration. Michael Young could not afford the 
expensive Micro Tower and wanted a similar product without the cost, which is 
why we are building this low-cost solution called the AirBud. 

3.2 Main Control Unit 

3.2.1  MCU Options and Selection 

3.2.1.1  Arduino Uno 

The Arduino Uno is a microcomputer based on the ATmega328P. It has an 
operating voltage of 5V, 14 digital I/O pins (6 of which provide PWM output), 6 
analog input pins, a USB connection, a power jack, a reset button, and runs at 
16MHz. The ATmega328P, an 8-bit AVR RISC-based microcontroller, provides 
the Arduino with 32KB of flash memory, 2KB of SRAM, and 1KB of EEPROM. It 
also supplies 32 general purpose registers, serial programmable USART, SPI 
serial port, and an 8-channel 10-bit A/D converter. With the integrated A/D 
converter and reliably tested and documented hardware this is a good option. 

3.2.1.2  Raspberry Pi 3 Model B 

The Raspberry Pi 3 Model B is a fully fledged microcomputer with a 1.2GHz 64-bit 
quad core ARMv8 CPU, 1GB of LPDDR2 RAM running at 900 MHz, 4 USB ports, 
and naturally runs a distribution of Linux called Raspbian. Other features of this 
microcomputer include 10/100 Ethernet, 2.4GHz 802.11n wireless, Bluetooth 4.1, 
3.5mm audio jack, and a microSD card slot. The Pi’s main line of communication, 
at least for our purposes are the 40 GPIO pins which also provides support for SPI 
communication. It runs on 5V and can output 3.3V or 5V through the GPIO pins. 
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The sheer computing power and endless documentation of the Raspberry Pi 3 
make this a good option. 

3.2.1.3  MCU Selection 

When deciding which microcomputer to use we went back and forth deciding what 
would be best. We knew our system would have a couple analog inputs to the 
microcomputer so an Arduino Uno would be best suited for that purpose. On the 
other hand, the immense computing power of the Raspberry Pi 3 was enticing. We 
ultimately decided on using the Raspberry Pi 3 for our system for a few reasons. 
 
The first and possibly biggest reason for using the Raspberry Pi 3 is the operating 
system it naturally runs, Raspbian. Raspbian is a distribution of Linux and would 
allow us to code our project in Python. Using python would allow us to use a 
database framework like Django to store any data on the Pi itself. The software 
selection process is further discussed in Section 3.2.3, but having such a malleable 
piece of hardware to write software on was a useful feature. Using the Raspberry 
Pi 3 as a basic Linux computer allows us to possibly set up a graphical interface in 
the future, while also providing us with a headless command setup now. 
 
Another feature on the Raspberry Pi 3 that contributed to its selection is the 2.4GHz 
802.11n wireless capabilities and the 10/100 Ethernet port. This allows us to easily 
install new software and packages directly from a webpage (as long as there’s an 
internet connection) and set up a local web server. One of the goals of this project 
is to have a web interface that the user can modify parameters from. Having the 
Ethernet port lets the user plug in their computer and access a web interface we 
set up that’s run on the Raspberry Pi 3.  
 
The last big reason we chose to use the Raspberry Pi 3 is for the amount of GPIO 
pins and the accessories we can use with them. There are a lot of connections 
going into and out of the microcontroller and having 40 GPIO pins is useful. Without 
using the Arduino Uno and its native A/D converters, we knew we would have to 
use an external A/D converter. We found the MCP3008 that worked perfectly on 
the SPI bus provided by the Raspberry Pi 3 GPIO pins. Using this setup and 
leaving a multitude of pins open for other uses as we need them is vital to the 
system’s success. 

3.2.2  Communication Protocols 

The nature or VHF Radios in aircraft communication has become critical in the 
communication of information between traffic control towers and aircrafts all 
around the country. Radios have communication protocols that need to be 
addressed prior, during and after communications. These protocols dictate who 
communicates, which signal propagates in the given frequency band and if your 
VHF will listen or transmit. These signals will need to be filtered and manipulated 
in such a way that the Raspberry Pi 3 will be able to interpret them and use them 
to follow adequate protocol for communication. 
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3.2.2.1  Push-to-Talk 

PTT has been a standard of two-way radio communication for quite some time. 
The nature of half-duplex communication systems is that there has to be some sort 
of signal flag to alert the transceiver that it is time to stop receiving and ready for 
transmission. The reason it is called push to talk is that the action required for this 
stage is top push the button on the microphone and it has been colloquially applied 
to the vernacular. What the button actually does is pull the PTT relay in the KX-
170B radio to ground, thus setting it into transmit mode. For the case of this system 
what will be done is that through one of the GPIO pins of the Raspberry Pi 3 and 
a PTT circuit in the interface board, the MCU will ground the relay and set the radio 
into transmit mode.  

 

Figure 3.2 KX-170B Receive Mode 

Because the KX-170B VHF Aircraft radio is a half-duplex communication system 
it can only do one of the two communication functions at a time. When the PTT is 
not grounded the KX-170B is in ‘Receive Mode” and can receive incoming audio 
signals. 

 

Figure 3.3 KX-170B Transmit Mode 

But when the PTT is grounded the KX-170B switches to ‘Transmit Mode’. In this 
mode the system cannot process any received audio and any communication to it 
is essentially lost. 

3.2.2.2  TX Signal 

Of the two functions a half-duplex system can make during communications is to 
transmit a message to a receiver. The TX signal is signal that is send out and 
carries that transmitted message. For the intended operation purposes of this 
airport the transmission frequency will be 123.05MHz. During transmission the 
half-duplex system will by nature be unable to receive any kind of transmissions.  
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3.2.2.3  RX Signal 

The received signal from the KX-170B Radio will be sent to the interface board 
through soldering into the positive end of the volume potentiometer. This signal will 
be received at 123.05MHz as assigned to the airport that we will use the system 
in. The importance of this signal is that it will allow the Raspberry Pi 3 to interpret 
what the pilot wishes to do with our device, and which steps will be taken later as 
a result of that. 

3.2.2.4  Carrier Detect 

Carrier Detect, in communications, is present in the squelch circuit with the function 
of suppressing the audio output of a receiver in the absence of a higher amplitude 
and strong input audio signal. The squelch can be opened, allowing all audio 
signals entering the receiver tap to be heard. This circuit can be useful when 
attempting to hear weak or distant audio signals. Squelch operates alone on the 
detection of the strength of the signal; when a device is set to mute, there is no 
audio signal present. Knowing if there is a carrier detect present, at the squelch, 
will allow the MCU know when there an audio signal present. 

3.2.2.5  Automatic gain control (AGC) 

Automatic Gain Control is a closed loop-feedback circuit where a signal is fed into 
and it’s expected to maintain and regulate to certain level of amplification. This 
signal can be sound or radio frequency. The AGC can give us two different cases 
for output. The first case is if the level of the input signal is too low, the designed 
system will output an amplified signal to the desired level. The second case is if 
the input signal is too high, the designed system will output a lowered signal to the 
desired level as well. The purpose of this system is to maintain a constant level for 
the output signal giving a wider range of input signal levels. AGC is commonly used 
is radio receiving to help equalize the desired average volume due to different 
levels received in the strength of signals and fading of the same. One of the 
consequences of not using an AGC is seen in the relationship between the signal 
amplitude and the sound waveform – the amplitude of this signal is proportional to 
the radio signal amplitude. The information contained by the signal is carried by 
the changes of the amplitude of the carrier wave. If the circuit were not fairly linear, 
the modulated signal could not be recovered with reasonable fidelity. However, the 
strength of the signal received will vary widely, depending on the power and 
distance of the transmitter, and signal path attenuation. Overall, the AGC circuit 
keeps the receiver's output level from fluctuating too much by detecting the overall 
strength of the signal and automatically adjusting the gain of the receiver to 
maintain the output level within an acceptable range. 
 

3.2.3  Tapping into the Radio 

 

https://en.wikipedia.org/wiki/Fidelity
https://en.wikipedia.org/wiki/Transmitter
https://en.wikipedia.org/wiki/Attenuation
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To extract and inject audio signals into the radio it is required to solder cables into 
the King 175B radio. This was done one of two ways: The first being soldering 
directly into the back plate of the radio and the other was into the actual circuit 
board of the radio. Depending on which signal needed to be extracted/injected it 
could be either of the aforementioned methods.  
 

 

Figure 3.4 Radio Backplate 

Soldering into the back plate of the radio proved challenging due to how compact 
the cables for power and microphone functions were. In the back plate of the radio 
the following signals were injected/extracted. TX audio was soldered into the 
microphone in line which corresponds to Pin ##. Power and ground are also 
soldered into the radio back plate on pins ## and ## respectively. PTT is another 
functionality of the interface board that is injected through the back plate through 
pin ##. 
 
Signals that are extracted from the radio are RX Audio, Carrier Detect and finally 
AGC levels. These required some analyzation of the King 175B radio schematic 
as they would be different from radio to radio. These signals required opening up 
the radio and soldering into key points of the radio circuit as to not affect radio 
functionality, but also provide a useful signal for the raspberry pi to analyze. The 
carrier detect signal was extracted from the squelch capacitor. This is because the 
squelch capacitor sits at a high voltage when closed and lowers when opened. 
Therefore, connecting to a line to that capacitor would simply read the voltage and 
leave the radio unaffected, like a multimeter would.  
 
The RX audio signal was extracted from the volume potentiometer. This required 
connecting to the input of the potentiometer, making sure not to connect to the 
wiper or the output avoiding a changing value as the knob would be adjusted by 
the user. Providing a uniform wave to the circuit and eventually the pi. 
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Figure 3.5 Where team tapped into radio for AGC and RX Audio 

Lastly the AGC signal was extracted from a test point on the radio. Upon revising 
the radio schematic there was a predetermined testing point for AGC values. The 
testing point output a DC voltage corresponding to the adjustment required to 
strengthen the input signal. This served as a perfect point to extract a value that 
would represent signal strength.  
 
All of the points chosen for the radio were thoroughly studied to make sure there 
would be no damage to an already fragile and aged radio. 

3.2.4  Language Options and Selection 

3.2.4.1  MCU 

For the main control unit, or MCU, there are a few options as far as what language 
to choose. Since we are utilizing the Raspberry Pi 3 for the MCU the first priority, 
was making sure that the programming language that we selected was directly 
compatible with the Raspberry Pi and had libraries in which to access the multiple 
General Purpose Input and Output pins, or GPIO pins. Having a library for the 
Raspberry Pi’s GPIO pins allows us to not have to work from the ground up, and 
strictly focus on how we are going to program the GPIO pins specifically. This 
saves us a lot of time and effort that we don’t have to put into a lot of code that’s 
only purpose would be to allow us to access the pins.  
 
For this design we chose to go with Python as our programming language for the 
MCU. Using python solves the initial requirement of having a default library for 
interfacing with the Raspberry Pi’s GPIO pins through the RPI.GPIO library. This 
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allows for basic reading and writing to the pins without having to create those initial 
functions ourselves.  
 
Another reason we chose python as our main language was because the Analog 
to Digital Converter, known as an ADC, that we are choosing has a python library 
that allow for easier reading and writing directly from the chip without having to do 
a lot of initial handshake messages and procedures to receive and send data. 
Because reading from most particular ADC’s can be complicated, as they have 
certain bit patterns in which are needed to configure and choose which of the 
devices’ functions are being used, it is nice to have an extra bit of encapsulation in 
which instead of building these bit patterns ourselves, we can simple call a read or 
write method. This not only shortens the amount of code written by us but again 
allows us to focus more on the actual implementation of our system rather than 
having to deal with a lot of headache simply reading from the ADC. This library is 
also open source so it is free to use and heavily supported by the community in 
case we run into any issues. 
 
Python was a good choice compared to other languages such as C as not only is 
it inherently Object Oriented and allows for a more modular structure to our code. 
The Object Oriented nature of Python allows us to create objects in which to 
delegate the functions of reading and writing to certain components and sensors. 
This also allows us to give control of certain components to certain objects and 
much more easily debug our code. Python is also a scripting language which 
makes it highly flexible in where and how it is actually run and implemented. This 
means that no matter how we structure the system and integrate the various other 
components (i.e. the HTTP server, DCHP server, etc.) the usage of our code can 
be kept relatively independent. This allows us more freedom to change certain 
modules and components in the system if we have to and not have to overhaul our 
python scripts too much. In other languages like C, it can be much more difficult to 
configure the code with all of these different components, as it has to be recompiled 
and is only set to run a certain way. There is not a lot of flexibility there, which is 
ideally what we find to be valuable in the structure of this system. 

3.2.4.2  Web Server 

As the main focus of this project will be focused around the backend of the system 
capturing weather data, parsing that data, and formatting it in a way in which to be 
broadcasted back out, we did not want to have to put a lot of unnecessary effort 
into designing and implementing a huge relational database. Doing this would 
require a lot of work just grabbing the required data and passing that data to and 
from the front end of the system. This is where we started looking into using a web 
framework that would allow for a Model View Controller, style of web design. Using 
such a framework would allow us to simply pass the necessary information from 
our models to our views and not have to make complicated PHP scripts to send 
queries back and forth to the database. Not only will using such a framework make 
our lives easier, but it will improve the performance of the system as data will be 
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populated into the views as they are created as opposed to loading the web page 
and then recommunicating to the backend for the required data. 
 
With these ideas in mind, we decided to go with the Django Web Framework for 
the backend and the AngularJS Web Framework for the front end. These two 
frameworks are MVC, or Model View Controller, frameworks. Django is created 
and utilized in Python, html, CSS and JavaScript. This MVC framework works 
perfectly without system since we will be using Python for our main MCU functions 
and scripts to interface with the GPIO pins. Another major reason for using this 
framework is that it abstracts a lot of the database behind models represented as 
Python objects. This means that we can write our code in an object oriented 
fashion and have the framework build the database tables for us behind the 
scenes. This is helpful for us in a couple of ways, the first being that when 
interacting with the database, we can treat each table record as an object that we 
can interact with. This means we can change the fields of that record as if they 
were general variables belonging to an object. Secondly this allows us to run 
functions on the records in our database in which we can sort, search, filter and 
build custom criteria in which to get, update and store records into the database 
without having to write a line of SQL. This leads me to the main strength of this 
framework, which is the fact that we can choose almost any database we want for 
the backend and not have to change a line of code for our models. This again adds 
to the flexibility of the system, as we can change out databases at any point if we 
want something lighter, faster, smaller, or more robust. 
 
Besides just having the database abstracted, we can import the schema of our 
models directly into our Views and again use the database table records as if they 
were objects and directly inject them into our html code. This means that in the 
HTML code I can use the frameworks custom tags to preload the needed data and 
utilize the database objects directly in the HTML instead of having to make a client, 
formulate a SQL statement, make a call to the backend and wait for the data to 
come back. The framework also makes use of custom tags to reduce the amount 
of html we write. By utilizing certain template tags, we can repeat a block of html 
for any number of database objects, which prevents us from having to write out 
multiple blocks of the same html code and do extra processing on data received 
from the database to populated each of those blocks separately.  
 
The last major reason for Using Django lies in the fact that there are loads of useful 
add on modules that will aid us in development. Two that we will be using for this 
system include Django Celery, and Django REST Framework. Django Celery is a 
job queue that will allow us to asynchronously queue, schedule, and run functions 
we write as tasks. This will greatly improve how resources are managed on the 
backend, which is immensely important since the Raspberry Pi is a powerful but 
small machine as far as memory is concerned. Because we want the majority of 
the resources on the Raspberry Pi to be handling the actual software operations 
of the system, instead of primarily the web server, it is important to make the 
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webserver as light and fast as possible on the server side so we do not bog down 
the system with http requests and web processing.  
 
Django Rest Framework is a plug in that will allow us to quickly write and utilize a 
RESTful API in which our frontend can “hook into.” REST stands for 
“Representational State Transfer” and is used to create web endpoints that provide 
database data to frontend web frameworks. This plugin to Django will allow us to 
take advantage of Django’s ability to abstract away the database as objects, and 
provide that information to our frontend as a JSON, or JavaScript Object Notation, 
object that can be utilized in the JavaScript as if we had gotten it directly from 
Django. This is important as it is the main and only point of communication between 
Django and our frontend framework, AngularJS. 
 
AngularJS is another MVC Framework whose strong suit lies in its ability to create 
single page web applications. It might seem like overkill to have two different web 
frameworks for the backend and frontend of the system, however this is extremely 
important since we want to remove as much stress from the Web Server on the 
Raspberry Pi as we can.  The more time the Raspberry Pi is handling web 
requests; the more time it is not properly managing the system resources that are 
essential to the system. This is where AngularJS comes in; AngularJS uses 
JavaScript to break up a single page and separate that into multiple views. It does 
this by grabbing data from a RESTful API and storing that information as models. 
It then uses these models in conjunction with its views to display the requested 
information on the screen. The real selling point here is in the fact that ALL views 
are loaded at once, but the framework only shows the selected view and only pulls 
in the data it needs, when it needs it. This allows us to consolidate all the views 
from the Django end into one view on the AngularJS end and have the client’s 
browser handle which view and information is being requested. In this architecture, 
instead of requesting a new view from the Raspberry Pi every time and waiting on 
the response, all of the views are already loaded at once on the client machine 
and the browser simply switches what content is being display and what content 
is hidden. This drastically reduces the traffic and computation on the Raspberry Pi 
and pushes all of the responsibility to the client’s browser (usually located on a 
machine more suited to handle the load).   
 
Database 
 
Even though the database will be mostly abstracted away from the system by the 
Django Web Framework, it is still an important part of the system that must be 
carefully chosen. Just looking at the line of Open Source SQL products there are 
many options ranging from very advanced and feature rich to simple and 
lightweight options. For this project we will not nearly need as many features as 
PostgreSQL provides as the models for this project will not be overly complex. Also 
since there is not really any form of user related security, it is a bit overkill to utilize 
a lot of the security features that come with a lot of SQL databases. Because this 
system can be classified as “embedded” and security are not as important in this 
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system, the focus on what database we needed focused more on speed, memory 
load, portability. These criteria made SQLite the perfect option to use for this 
system. SQLite is stored in a single file format as opposed to the traditional 
database design. This allows for incredible portability, as simply backing up this 
file at certain stages will give the system administrator a lot of functionality as far 
as rolling back the database if it were to get corrupted. Also the fact that the file 
can be copied to a completely different system and, as long as it is configured 
correctly, will be a complete copy of the database. Secondly, as the name implies, 
this style of database is extremely light weight and does not take up nearly as 
much space as traditional database. Its small size allows for the database to be 
very fast as well, making this database the perfect selection for this system.  
 
If there are any fallbacks to mention here, we would probably have to say that this 
particular database does not include security and can only allow one “write” action 
to happen at one time. As discussed above, the security features of the database 
are not necessary for this project and this drawback can be ignored. As far as only 
being able to write one entry at a time, this is not so much of a problem for us 
considering that writing to the database is only done under certain circumstances 
in which data is being read from the various components of the system. Here we 
do not have to really worry about multiple entries being written at the same time 
since each request sent to the system can only be processed one at a time 
anyway. This problem will only be an issue if multiple users are trying to change 
the configurations settings at the same time over the User Interface. This again is 
not a major problem since the Raspberry Pi will only be on a local, very small 
network and not normally accessible to the outside world. This in and of itself is a 
form of security measure due to the fact that not many people will be changing the 
configuration settings, and have to be on the Raspberry Pi’s local network run by 
the Raspberry Pi’s DCHP server to even access the page. 
 
Job Queue 
 
Lastly, we need to talk about the Job Queue software that the Django Celery 
Module (discussed above) will be utilizing. There were two major options as far as 
which job queue to use, RabbitMQ, and Redis. Both of these options are inherently 
compatible with the Django Celery plug in and are both recommended options by 
default. RabbitMQ is a very fast, lightweight, and persistent job queue that would 
be the better option as far as the most lightweight option. However, in this case we 
decided to go with the more robust Redis job queue for a couple of reasons. Redis 
has a few more options as far as configurability in which we have the potential to 
have multiple jobs ques clustered together if we chose. We do not foresee the 
issue of overflowing the one job queue to be a problem, however it is nice to know 
we have the option to play around with different configurations to see what gives 
us the best performance. The main reason for choosing Redis was in the fact that 
Redis can also serve as a Key-Value pair dictionary that is store in the systems 
persistent memory. This can come in handy since we do not necessarily want to 
implement the Python jobs to read and write to the GPIO pins to be governed by 
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the Web server and the Django framework completely as that doesn’t really make 
sense from a structural standpoint. The Redis Key-Value store would allow for 
standalone python services to fetch the various sensor data from the external 
components and then store them to the Redis Key Value Dictionary. Then the 
tasks governed by the Django Celery plug in can asynchronously grab these 
values from the stores they were saved in and save them to the database (that is 
governed by the Django Web Framework). This makes more sense structurally 
and allows us to keep a lot of the functionality separate and modular. This will 
make testing and debugging the system much faster and easier to do. While 
RabbitMQ may be lighter and faster on the system, the extra bit of functionality we 
get from Redis will be more useful to us in linking all of the different parts of the 
system together. 

3.2.5  Text-to-Voice Software 

One of the most important pieces to this system is the Text to Speech software. 
This software will be what takes all of the weather and transmission data that is 
taken in from all of the sensors and creates the voiced broadcast that will be played 
over the radio channel and heard by the pilots. Needless to say that there are a 
few very important specifications that the text to speech software must follow. First 
and foremost, the voice that is created by the text to speech software chosen must 
be indisputably clear and concise. Even if a certain Text to Speech software 
creates an understandable output over laptop speakers, it must be understood that 
this signal will be running through various amplification and compression circuits 
and will eventually be broadcasted over the radio channel as radio waves. 
Throughout this process there can be a lot of interference and the signal may be 
heavily influenced before it is even heard by the pilot. This is why it is so important 
to have a clear and clean output. Secondly, the output of the Text to Speech 
software must be configurable. This means that the language, pronunciation, and 
speed of the output signal must be configurable. A clear output is still no good if 
the output is too fast to hear or mispronounced. Also some voice settings may be 
more appealing to other users and improves the user experience of the system. 
The next requirement for the Text to Speech software is that the output must be 
easily stored in a file. This is so that the history of the system can be kept track of 
if the user wants to see previous broadcasts. Lastly, and arguably most 
importantly, whatever Text to Speech solution we choose must be able to be used 
without an internet connection. This system will be placed in an environment where 
a solid internet connection may not be reliable. In that case we cannot have a major 
part of the system be reliant on something that may not be provided.  
 
Looking at the above requirements, we came across a few good options. IVONA 
Text to Speech was easily the clearest can best voice out of all of the Text to 
Speech software we looked at. It was highly configurable and had many 
configurations that could be set including nationality, language, gender, and 
pronunciation. We would have easily gone with this solution, except for the fact 
that it is a service provided over the internet, the output could not be saved to a file 
by default, and cost a good bit of money a month for the service. Secondly we 
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looked at Festival TTS. This particular solution is free, open source, is directly 
compatible to Linux, and run directly on the Linux system. Festival was by far the 
most configurable system we saw with tons of different configurable voices. What 
I liked most about this solution is that other language packs found or created by 
the community could be imported into the system, as well as tested on the fly. The 
downside to Festival came in the form of its clarity and storability. While its 
configurability is unparalleled, it is not the clearest solution and difficult to work 
with. It is the trickiest solution to set up and the lack of clarity knocks it out as a 
viable option for this system. Lastly, there was PICO TTS. PICO is a stripped down, 
barebones version of the Text to Speech project used in googles android products. 
While very simplistic, this solution is open source, free, and can be run directly on 
any Linux system (including the Raspberry Pi). While the initial set up can be a 
little unorthodox, it is only a matter of downloading, unpacking and “make installing” 
the correct package found online. Anyone familiar with the Linux operating system 
will not have too much trouble here. We ultimately chose this option because the 
voice output is clear and can be store directly as a wav file. While there is not a ton 
of configuration as far as the voice there is enough for our purposes here. The 
default gender of the voice is female and there really isn’t anyway to change the 
gender. However, there are a good amount of different languages available and 
the pronunciation and pronunciation speed can be changed by editing the text you 
send to the engine. While not the most flexible, the PICO TTS engine is clear, free, 
and can be run on the machine natively without an internet connection, which 
covers the majority of the requirements necessary for our system. 

3.3 Interfaces 

This sections discusses how the components are connected in the system block 
diagram and the communication between them. Also provided is an overview of 
the data that will go between the two components and what that data will be used 
for in the context of the entire system as a finished product.  

3.3.1  To Radio 

These connections are ones that go from the interface board to the radio. 

3.3.1.1  TX Audio 

The transmit audio will be an analog output coming from the 3.5mm jack of the 
Raspberry Pi 3. This signal will be run through the interface module. This audio will 
be processed so it can be transmitted by the KX-170B Radio without clipping.  

3.3.1.2 PTT  

This PTT block will put the KX-170B radio into transmit mode prior to audio being 
communicated. The purpose of this signal is to simulate the action that is pushing 
the mic button to talk over the radio. In this circuit there will be a testing switch that 
will allow for input simulation in system testing. 
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3.3.2  From Radio  

Like the signals being used to be able to transmit through the KX-170B Radio, 
there is also a need to analyze signals coming from it. These signals will go through 
the interface board and allow for the Raspberry Pi 3 to analyze what is being 
needed by the pilot at the other end, as well as allow the Raspberry Pi to receive 
the actual audio from the pilot.  

3.3.2.1  RX Audio 

As previously mentioned the Raspberry Pi will need to be able to receive the audio 
being transmitted by the pilot. This RX audio signal will be picked up from the top 
of the volume potentiometer and run through the interface board. This is to prevent 
the volume setting on the actual KX-170B radio to effect the RX audio signal being 
transmitted to the interface board. To interface all analog signals with the 
Raspberry Pi 3’s the signals need to be converted from analog to digital. The 
important detail on this conversion is the Raspberry Pi 3’s SPI BUS requirement 
to have the output signal’s logical 1 to have a 3.3V maximum input to be able to 
properly communicate with the Raspberry Pi 3. This means that some degree of 
voltage adjustment will have to be done to the output for a high resolution, but 
relatively low voltage analog to digital conversion.  

3.3.2.2  Carrier Detect 

The Carrier Detect in our system was identified from the main radio. The carrier 
detect levels were obtained by connecting the radio, at the squelch circuit output, 
to the oscilloscope and examining the output voltage when there is a RX signal 
detect present and when there is RX signal detect present. 
 

Carrier Detected 7.83 Volts 

No Carrier Detected 4.38 Volts 

 

3.3.2.3  Automatic Gain Control 

The AGC will be measured from the radio during a transmit radio check. A 
conversion table will be used to tell the microprocessor what the power level is 
during the transmission.  

3.3.3  From Microcomputer 

For output the Raspberry Pi 3’s interface is more forgiving. The manipulations of 
the signals are more for convenience and practicality rather than must haves or 
else the system will be rendered useless. The two signals that the Raspberry Pi 3 
will output to the interface are the two key communication signals in half-duplex 
communication. The PTT and the TX Audio signals. These are then received by 
the KX-170B Radio and broadcasted to the user on the other end of the 
communication channel.  
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3.3.3.1  PTT 

The PTT line will be activated from one of the Raspberry Pi 3’s GPIO pins to a 
circuit that will pull the PTT line of the KX-170B Radio to ground. This will engage 
the transmit mode on the KX-170B radio as indicated by the Raspberry PI 3’s MCU. 

3.3.3.2  TX Audio 

The transmit audio by the Raspberry Pi 3 will be through the 3.5mm jack already 
built in the system and pass through the interface board. This audio signal will 
contain what the pilot will hear on the line. The Raspberry Pi 3 will transmit the 
received audio from the RX audio signal as well as a message about the RX audio 
signal’s strength coming into the system, the wind information, and wind direction. 
This audio will be pushed through some signal conditioning and compression to 
result in a clear signal for the radio to transmit to the user. 
 
Audio Limiting 
 
There are two kinds of AC signal compression that were considered for this 
application. There is the limiting and clipping. The consideration for clipping stems 
from the idea that if a voltage were high enough it could end up damaging the radio 
beyond repairs. Voltage clipping is done to ensure that an AC voltage range does 
not exceed a pre-set maximum, and if desired minimum as well. This is mostly 
done using diodes which activate once the threshold voltage is reached and then 
redirect all excess voltage to ground or somewhere else in the circuit. In the end 
what happens is the signal is very distorted but it stays within the preset range 
regardless of the voltage pushed it, as long as it’s nothing excessive. Typical 
clipped signals look like Figure 3.5. 

 

Figure 3.6 Original vs. Clipped Signal 
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As it can be clearly seen the original signal has been distorted losing some of the 
fidelity but if a system were to require a very specific maximum input this would 
ensure that maximum is not reached.   
 
On the other hand, there is limiting, soft clipping, which is meets the system 
requirements in a more suiting manner. This is because soft limiting is similar to a 
clipper, but it reduces signal amplitude instead of re-routing it. Keeping signal 
fidelity, but removing the voltage ‘loudness’ from it. This is done by using an active 
circuit with an operational amplifier element. Using something like a FET and 
diodes to create variable gain that is dictated by the amplitude of the input. This 
created a relationship between the input signal and the gain of the system. Once 
the input signal reaches a certain threshold the gain, along with some voltage 
offset input will lower the amplitude of the system to keep the signal within the 
desired range. Figure 3.6 demonstrated how voltage limiter will have it output look 
once input surpassed the desired threshold compared to a hard limiter and the 
original input signal. 

 

Figure 3.7 Hard Limiter vs. Soft Limiter Output 

As demonstrated by the figure soft limiting keeps better signal fidelity which for the 
purpose of playback better suits the unmanned field base operator being designed. 
This is from the much slower attack and release times from the soft limiter. This 
gives the signals the soft edges instead of the hard cutoff at the threshold voltage. 

3.3.4  To Microcomputer 

These connections will go from the interface board to the microcomputer and will 
allow the microcomputer to analyze what the user is asking for. Most of these 
inputs come from the SPI bus that can be read and used by the microcomputer. 

3.3.4.1  SPI Bus 

The serial peripheral interface bus is a synchronous serial communication interface 
often used for short distance communication. In our system, the AGC voltage and 



 
 

28 
 

wind direction are sent to the microcontroller using the SPI bus. The bus can 
operate with a single master device and with one or more slave devices. This 
means that multiple inputs can be connected to the SPI and they will be separated 
and transmit independently. 

 
AGC to SPI Bus 
 
After receiving the AGC voltage, conditioning it through the TL084 Op-Amp, and 
converting to a digital signal through the ADC, the AGC is sent to microprocessor 
through the SPI bus. The AGC voltage is one (1) of three (3) signals sent via SPI. 

 

Figure 3.8 AGC Data Flow 

 
Wind Direction to SPI Bus 
 
The process that the wind direction follows is similar to the AGC voltage. After 
receiving the wind direction, conditioning it through the TL084 op-amp, and 
converting it to a digital signal through the ADC, the wind direction is sent to the 
microprocessor through the SPI bus. This is the second signal of three (3) sent to 
the raspberry pi via the SPI bus. 

 

Figure 3.9 Wind Direction Data Flow 

3.3.4.2  Carrier Detect 

After the conditioning of the carrier detect (when present), the logical output of 3.3V 
continues to the microcontroller. The microcontroller receives this at one of the its 
general purpose input/output (GPIO) pins. It is important to note that the 
comparator output is 3.3V, which is the only input the Raspberry Pi can take. This 
continues to elaborate on why is important to have a logical output from the 
comparator that indicates the presence of a carrier detect regardless of its 
amplitude. In this case, 5V to 8V. 

3.3.5  From Anemometer 

These connections are coming into the interface board from the anemometer to be 
directly routed to the microcomputer. 
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3.3.5.1  Wind Speed 

The anemometer provides us with the wind speed, after condition of this signal, 
the output of the PNP transistor continues to the microcontroller. This output, if 
wind is present, will be 3.3V. This value will be connected to a second GPIO pin 
on the raspberry pi. The important notes when measuring this value are the 
amount of times and how often this value is sent to the microcontroller. This will 
determine the value in miles per hour (MPH). 

3.3.5.2  Wind Direction 

The second important value that the anemometer provides us with is the direction 
of the wind. The anemometer uses a potentiometer to determine direction. The 
potentiometer can take up to 5V with a current limit of 20mA. 

3.4  Power 

It’s important to record the power consumption of the different devices used in the 
system. This provides us with information necessary to choose the right power 
supply. It’s important to power the devices with the correct needed voltage and 
current for best functionality and stability.  

3.4.1  Voltage Source 

The power source used for the AirBud is a 13.8V 5 Amp power supply 

3.4.2  DC to DC Converters 

There are several DC to DC voltage converters in our system. These are used to 
step down the 13.8V source to the desired outputs. As seen in table XY, the 
components require different voltages; 3.3V, 5V, 12V. 

3.4.2.1  3.3V Regulators 

The 3.3V source is used for 2 different things. The first one, as previously 
mentioned, is for the carrier detect. This 3.3V regulator provides the comparator 
with the necessary output when the comparator outputs a logical 1. When there is 
a carrier detect present, the output will be 3.3V; otherwise, 0V. 
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Figure 3.10 3.3V Regulator 

3.4.2.2  5V Regulators 

A second voltage regulator used in our system is for 5V. This 5V are used in the 
anemometer when measuring the wind direction and also to power the analog to 
digital converter MCP3008. The ADC has the option of also being powered with 
3.3V but at 5V we are able to obtain a higher resolution when converting. The 
regulator has connected at its input a XY pF decoupling capacitor. This capacitor 
adds fast charge storage, commonly used when connected to a power supply 
which are relatively slow. The second pin of the regulator is connected directly to 
ground and then the third pin, output is connected to a XY capacitor that is also 
connected to ground. This second capacitor serves the same purpose of adding 
fast charge storage. Below is the schematic for the 5V regulator setup. 
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Figure 3.11 5V Regulator 

3.4.2.3  12V Regulators 

The third voltage regulator used in our system is for 12V. We obtain 13.8V from 
the source and convert it to 12V. This 12V are used to power the op-amps. The 
regulator has connected at its input a XY pF decoupling capacitor. This capacitor 
adds fast charge storage, commonly used when connected to a power supply 
which are relatively slow. The second pin of the regulator is connected directly to 
ground and then the third pin, output is connected to a XY capacitor that is also 
connected to ground. This second capacitor serves the same purpose of adding 
fast charge storage. Below is the schematic for the 12V regulator setup. 

 

Figure 3.12 12V Regulator 
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3.4.2.4  -12V Voltage Inverter 

The need for a 12V negative power supply comes from the desired soft limiter 
being used for the interface board. This soft limiter will be applied for the TX Audio. 
As Figure 4.2.5 C shows there is need for a -12V DC power supply. The desired 
part for this implementation is the TPS63700 DC-DC Inverter.  

 

Figure 3.13 TPS 63700 Pin Layout 

This is a TI component who’s input and output voltage ranges match the system 
requirements. Though it could be supplied with a 3.3V input from one of the 
regulators it is preferable to supply it through the 5V regulator. This is because it 
provides the highest efficiency in the output signal, and supply an output of -12V 
for the interface board. 

 

Figure 3.14 Efficiency at 12V output 

The layout for the TPS63700 DC-to-DC inverter requires different components 
depending on the desired voltage output. Since the interface board requires the   -
12V output the following schematic is appropriate:   
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Figure 3.15 -12V Supply TI Reference Schematic 
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4 Interface Board Design 

 

Figure 4.1 Interface Board Block Diagram 

The interface board will interpret all of the incoming and outgoing signals between 
the radio and the Microprocessor. This will be handling the TX and RX signal 
conditioning, conversion and amplification between the two systems. This will also 
push the PTT signal into the radio for whenever a transmission is going to be sent 
out to the pilot requesting information. Inputs will be received from directly tapping 
into the radio at specific solder points or through the back pins of the KX-170B 
VHF Aircraft radio. In this the communication between the UNICOM programmable 
HUB, the Raspberry Pi 3, and the broadcasting hardware, the KX-170B VHF 
Aircraft radio 
 
 
 
 
 
 
 
 
 



 
 

35 
 

4.1  Power 

Due to the Florida heat the operating temperature of components will be assumed 
to be at 30ºC for power consumption calculations unless otherwise stated. 
 

Component Part Number Power Consumption 
at 30ºC 

Quantity 

Operational Amplifier TL084 490 mW 1 

Operational Amplifier LM234 800 mW 3 

PNP Transistor 2N4403 600 mW 2 

NPN Transistor 2N4401 625 mW 1 

FET 2N3820 360 mW 1 

NPN Transistor BC546 625 mW 1 

 

4.2  SPI Bus 

After the AGC, RX Audio, and Wind direction signals have been converted to digital 
signals this SPI Bus will be used to deliver information to the Raspberry Pi 3. This 
bus will carry information in the form of a 3.3V maximum voltage digital signal. 

4.3  PTT Circuit 

 

Figure 4.2 PTT Block Diagram 

In order to communicate to the Raspberry Pi 3’s intent to transmit a signal needs 
to be pushed so the KX-170B Radio in order to get it in a ‘Ready to Transmit’ state. 
This signal is going to be generated by the Raspberry Pi 3’s GPIO pin and a DC 
power source for system testing. This will require two inputs: one for system use 
and one for system trouble shooting. The input from the Raspberry Pi 3’s GPIO 
pin will be for practical use, thus the DC voltage source will be used for testing. 
During testing the GPIO pin will act as a ground and part of the current will be sent 
through there and the rest will be sent to the PTT input of the radio. This will allow 
the user to check if the circuit is bad or if there has been a programming error in 
the Raspberry Pi 3 system. The intent of this circuit is to simulate the PTT signal 
generated by the microphone interface in the radio. The idea is to act grounded 
when not transmitting and to input a current when ready to transmit in order to 
open the mic channel and set the KX-170B in a ready to transmit mode. 
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4.3.1  PTT Circuit Design 

 

Figure 4.3 PTT Circuit 

The Push-To-Talk (PTT) circuit is going to be responsible for setting the KX-170B 
radio into transmit mode. This is done by using the GPIO pin in the Raspberry Pi 
3’s pins as a 3.3V source. This voltage being pushed through the NPN transistor, 
Q1, pulls the PTT relay day to ground. The action of pulling the relay to ground 
results in the collapse of the magnetic field around the inductor. This will send a 
large voltage back from the PTT relay to the Q1 transistor. This is where the 
reverse biased diode will re-route that voltage to ground, thus not burning the 
transistor. When it comes to testing the system switch, S1, will have the 3.3V 
source from the interface board act as the Raspberry Pi 3’s GPIO input. This will 
simulate the act of readying for transmit on the KX-170B. Though the design shows 
the GPIOPIN power source as a 3.3V power source it must be noted that this is a 
pin from the Raspberry Pi 3’s interface. This will act as a ground when being tested 
as the system will be inactive, or turned off, when being tested. The circuit takes 
full advantage of the Raspberry Pi 3’s architecture to reduce the amount of 
components required to achieve the same function. When using the Raspberry Pi 
3’s GPIO as a ground its current limits is around 16mA maximum current before 
burning the microprocessor. Therefore, the current running from the interface 
board power supply is split using resistors R1 and R2 above. Thus ensuring that 
the Raspberry Pi 3 operates as a ground with proper current flow. 

4.3.2  PTT Circuit Design Final Changes 

The final design for the PTT circuit remained the same as it originally provided the 
intended purpose. One designation that was determined and differed from the 
original was the resistor values. Originally intended to be 10k for both R44 and 
R45 it was later changed to 1k for both. This was done to allow for a larger base 
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current to flow into the transistor and be able to set it into saturation mode. 
Otherwise it was too low a current to ground the 13.8V sitting on the PTT line 
coming from the radio. 

4.4  Carrier Detect 

The consolidation between the Radio and Interface Board serves as the bridge to 
be able to condition the carrier detect and identify when there will be transmission. 
Since we only have two (2) levels for identification, a comparator is being used to 
compare and determine which level, that indicates transmission or no 
transmission, is being received. 

4.4.1  Comparator Circuit 

The comparator being used is the LM393 Dual Differential Comparator. The 
purpose of this device is to compare two (2) voltage values, and output a digital 
signal indicating which of the two is larger to the main control unit through a GPIO. 
The image below references to the pinout of the built circuit. 
 

 

Figure 4.4 LM393 

 
The differential comparator consists of a high gain differential amplifier. These 
devices are commonly used in systems that measure and digitize analog signals 
such as analog to digital converters, as well as relaxation oscillators. 
 
In our application we compare the received signal, carrier detect present or carrier 
detect not present, with a reference voltage. 
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Figure 4.5 Comparator Circuit 

The voltage measured for RX audio signal (CD) being present was 8V+; meaning, 
when compared to the reference voltage, 6.5V, the comparator will output a logical 
1, allowing the 3.3V flow through the pull-up resistor becoming the output to the 
next stage of the circuit. Next stage of the circuit being to a GPIO pin of the 
microcontroller. The voltage measured for RX audio signal (CD) not present was 
5V+; meaning, when compared to the reference voltage, 6.5V, the comparator will 
output a logical 0, this output will not allow the 3.3V become the output to the GPIO 
pin. See the image below to follow logical output of the comparator LM393. 
 

𝑉0 = {
0, 𝑉+ < 𝑉 −
1, 𝑉− ≥ 𝑉 −

 

 
The 6.5V for reference are achieved through a voltage divider circuit. The input 
(Vin-) is 12V which is then divided through both resistors of 10k ohms and 8.5k 
ohms. The reference is then then compared to the ground at the 10k ohms resistor. 
This will create a constant output of 6.5V since the 12V is being provided by a 
voltage regulator. 
 
A feature added the circuit was tested and built on a protoboard and printed circuit 
board is the ability to simulate the input to the comparator. This allows the user to 
be able to debug any issues on the circuit and bypass the use of the VHF radio for 
testing purposes. The image below shows the headers added to the circuit for two 
different modes. Mode 1 connect to the radio and mode 2 “CD test” which stands 
for carrier detect test. 
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Figure 4.6 

A second feature added to the circuit is an LED at the output signal. Several circuits 
in the overall design of the interface include LEDs. This allows the user to be see 
the circuits that are properly working and the ones that aren’t in the case that the 
LED is off. For the comparator, since the output is 3.3V, the current across the 
LED was used to measure the desired resistance. The calculated value for the 
resistor was 150 ohms. 

4.4.2  Operational Amplifiers 

The use of operational amplifiers is necessary for the many active circuits being 
used in this interface board. Since the interface board will be handling two analog 
signals, TX and RX audio. In order to properly condition those signals into ideal 
signals for the Raspberry Pi 3 they must go through some active circuits. Initially 
the interface board was planned to not include any negative power supplies and 
the TL324 would be the ideal operational amplifier to handle the signal processing. 
Though as the design was further looked into and more complex circuits were 
deemed fit for the practicality of this system a need for a negative power supply 
was required. This meant that the LM324 could be replaced for a TL084 since dual 
power supplies would be possible. This decision to switch would have required to 
a redesign of all circuits.  What was decided upon was to simply use both circuits. 
Since the LM234 would simply use the positive 12V supply and the TL084 would 
use both the positive 12V and the negative 12V supplies.  
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Figure 4.7 LM124W Pinout 

 

Figure 4.8 TL084 Pinout 

It can be noted that both the TL084 and the LM324 have the same pin layout with 
the only difference being at the negative input, pin 11. Where the TL084 takes in 
a negative supply the LM234 will have that pin to ground. This makes them ideal 
for breadboarding. Dues to ease of access breadboarding tests will be done will 
the TL084 operational amplifier, since their function is interchangeable and the 
circuit would remain unchanged once they are swapped out. 
 
One observation that was determine critical during testing was the designation of 
a DC offset on the operational amplifier circuits. Because it was determined to used 
single supply op amps to reduce powers supplies on the interface board, it was 
now required to apply an offset to any audio modulation circuit. This was 
represented in both the TX audio and RX audio final circuitry. Coincidentally a 
polarized capacitor was added to remove bias accordingly and output a final 
unbiased audio signal to the radio/raspberry pi. 
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4.5  TX Audio Circuit 

 

Figure 4.9 TX Audio Schematic Section 1 

 

Figure 4.10 TX Audio Schematic Section 2 
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The KX-170B VHF Radio usually is used of a carbon microphone. The purpose of 
this circuit is to inject the transmit audio coming into the radio from the Raspberry 
Pi 3’s 3.5mm audio jack. The transmitted audio will be required to be conditioned 
and compressed. The conditioning and compression of the transmission audio 
signal is to prevent over modulation when being transmitted by the KX-170B Radio, 
as well as to prevent the protection mechanism in the radio to trigger and prevent 
audio from being transmitted. 

 

Figure 4.11 TX Audio Circuit Block Diagram 



 
 

43 
 

4.5.1  Audio Compression Circuit 

 

Figure 4.12 TX Audio Compressor Schematic 

The use of audio compression is to normalize the varying amplitude of the outgoing 
transmission signal, through the interface board. This will protect the transmitted 
audio signals from over modulation and distortion, but keep some degree of fidelity 
when transmitting. The reason being, when the Raspberry Pi 3 does the RX audio 
retransmission to the pilot, the pilot will then hear his transmitted audio the same 
way the Raspberry Pi 3 received it. To do this the circuit will use a combination of 
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diodes, one p-channel JFET, two NPN transistors, one PNP transistor and four 
operational amplifiers. The TX audio signal will be pushed through the operational 
amplifier with an almost unit gain, due to resistor errors. This TXCOMPRESSED 
output will then go through a full-wave detector circuit where it will activate upon 
all large increases in amplitude of the circuit. When the TXCOMPRESSED output 
is large enough and trips the full-wave detector that in turn will activate the collector 
on transistor T1. This then gets mirrored by the T2 and T3 circuit which then 
pushes it onto the negative input of IC7B, the fourth operation amplifier in the 
circuit, which pulls a negative voltage through the JFET, and thus lowering the 
input amplitude to the circuit. 
 

 

Figure 4.13 FET Audio Peak Limiter (Georgia Tech Permission Pending Unused in Final Revision) 

The circuit design being used for the TX Audio Compressor is a peak voltage limiter 
designed by Marshall Leach, a professor at the Georgia Institute of Technology. 
The reason this circuit is going to be used to audio compression is that the attack 
time for the limiter is fast enough for audio transmission without any noticeable 
delay. The parameters for the voltage activation for the full-wave detector is 
determined by the resistors R1 and R2 in tandem with the pinch-off voltage of the 
FET J1. With the FET pinch off voltage being denoted as VP and its saturation 
current as IDSS the formula for determining appropriate values for R1 and R3 are 
(CITATION): 
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Where the parameters of the pinch-off voltage and saturation current are 
depended on the individual FET and should not be considered universal. This is 
because different FET with different values for the latter will result in different 
optimal values for R1, R2 and R3 respectively. The circuit activation is intended to 
be around one tenth of the pinch-off voltage. The 2N5450 p-channel JFET is 
around 3V making the 300mV TX Audio optimal for conditioning since anything 
above 300mV would get reduced accordingly. Ideally for this kind of design the 
values for R1, R2 and R3 would be chosen such that the limiter slope would be 
around 20dbm. Though it is not large for audio conditioning and due to the range 
of voltage the TX Audio will be ranging in that slope is more than enough to limit 
the incoming audio properly. Adjusting for larger values would require larger 
resistors which in turn would increase the noise due to thermal noise from the 
larger resistors. To ensure the proper offset is fed back into the input through the 
FET resistors R16 and R14 must meet the following condition:  

 
The gate voltage coming into the FET must be around the same as the pinch off 
voltage, thus values for R15 and P1 must be chosen such that it can range not too 
far off from 3V (an average pinch off voltage for the 2N5460). Having the negative 
voltage supply as reference for that voltage divider: 

 
Where V+ is supplied by the 12V power supply for our implementation thus it must 
also be reflected in the other component values for the circuit, but it does not affect 
the efficiency as the circuit will only require voltage ranges no larger than 1V. Lastly 
the attack time on the limiter has its properties defined by a combination of resistors 
R10, R9, R13, R1 and R2, capacitor C2 and the properties of the FET. 
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4.5.2  Audio Conditioning Circuit 

 

Figure 4.14 TX Audio Low Pass Filter Schematic 

The TX Compressed Audio will be run through a 2 stage Butterworth low pass 
filter. This active filter uses its capacitors, C1 and C2, as well as its’ resistors, R1, 
R2, R3, and R4, in order to filter any signals with a frequency higher than 7.2kHz. 
This is done as a final measure to ensure fidelity in the signal being transmitted, 
thus blocking out any high frequency noise that may have leaked into the signal 
prior to transmission 

4.5.3  TX Audio Conditioning Circuit (Final Revision) 

 

Figure 4.15 TX Audio Conditioning Circuit (Final Revision) 



 
 

47 
 

Though the initial iteration of the TX compressor served it purpose it was 
determined too large for the compact idea behind this system. The need of three 
transistors, four operational amplifiers and one FET was too many components 
that could fail should there be a short or complications. Under the guidance of 
sponsor Michael Young, a new circuit was designed to undertake the compression 
and filtering of the TX Audio. 
 
Initially designed with two 10k potentiometers in the input and output to adjust the 
audio levels prior to entering the radio to ensure compression in high levels but an 
output bellow 2.1V. This is key because if the audio input to the radio was too high 
the radio would automatically process and reject the injected signal. Therefore, it 
was critical to remain under the 2.1V peak range. The key aspect of this design is 
the half-wave rectifier in the first feedback loop of the two operational amplifier 
system. The output signal has its negative range removed through a reverse bias 
diode D5. The positive band then turns on the positive diode D4, and this diode 
switches on and off as the positive band pulses through the half wave rectifier. This 
turns on the N-MOSFET creating a variable resistance that finally compressed the 
output signal. Creating that protective barrier between the Raspberry Pi 3 Codec 
and the VHF Radio. A secondary aspect is the low pas filter caused between R39 
and C11 that will filter any high frequency noise that may have leaked into the 
audio. 
 
A secondary but key aspect of the circuit design is the unity buffer amplifier by the 
output. This is due to the load on the radio discharging C5 faster than the intended 
RC time constant. To prevent this, it was decided that using the second operational 
amplifier that the LM358 provided would be ideal. The simulated infant resistance 
of the amplifier would simulate a separate the circuit from the radio. Preventing the 
radio load to affect the audio compression when transmitting. 
 
Finally, when the potentiometers were replaced with resistors it was designed to 
this specific radio but voltage dividers were kept in line in case this PCB would 
outlive the aged King 175B radio. Such that it could be adjusted to any new radio 
that is adapted to this system. 
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4.6  RX Audio Circuit 

 

Figure 4.16 RX Audio Schematic 

 

Figure 4.17 RX Audio Circuit Block Diagram 

The received audio signal is what is going to allow the Raspberry Pi 3 to later re 
transmit the signal in a later stage of the equipment check function. While the AGC 
will provide the Raspberry Pi 3 the received signal strength the RX audio will 
provide the voice recording that will be played back to the pilot during the 
equipment check. This will let the pilot know that his microphone is working and 
the signal strength the radio is receiving. The received audio signal will only need 
to be amplified enough so that the analog to digital converter can properly convert 
it into the bit stream that will pass through the SPI bus and into the Raspberry Pi 
3. The received audio signal will be amplified to a maximum of 2.92V. The RX 
Audio signal will be offset by 3V in order to provide an even 2 range for both the 
positive and negative end of the audio signals. This is to avoid reaching the 1V 
input voltage to ensure accurate readings in the analog to digital converter. This 
will go through the analog to digital converter that will have a 5V high resolution 
digital output. This output will then be reduced to 3.3V through some voltage 
dividers. The Raspberry Pi 3’s programming will then interpret that into the 
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appropriate digital bit stream for play back and message synthetization during the 
transmission stage of communications. 

4.6.1  Audio Conditioning Circuit 

 

Figure 4.18 RX Audio Conditioning Schematic 

The analog conditioning interface circuit will condition the RX audio such that it no 
longer has a ± voltage amplitude but will instead be a completely positive voltage 
AC signal. This signal will be amplified and filtered so no more noise is going 
through it before making into the analog to digital converter. This circuit has no 
gain as the final filter will provide the gain and dynamic range for the analog to 
digital converter. In Figure 4.2.6 B the polarized capacitor is there to remove all dc 
biasing from the received audio. This will provide the interface board with an 
unbiased, analog audio signal that will be conditioned by the circuit. Using the 5V 
power supply from the interface board a positive bias is given to the RX audio 
signal through the operational amplifier IC9A. Though because a 5V bias is too 
much for the analog to digital converter it is then divided using resistors R16 and 
R15. Using values of 10k and 15k respectively the resistors split the interface 5V 
input into a 3V reference voltage that will go into the negative op amp input. The 
signal is not only offset but also amplified by the operational amplifier. Though 
because the signal cannot exceed 5V once being pushed into the analog to digital 
converter it is only amplified by a factor of 11. 
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4.6.2  Low Pass Filter Circuit 

 

Figure 4.19 RX Audio Low Pass Filter Schematic 

The 2 stage Butterworth low pass filter will be the second stage of the Rx Audio 
circuit. This will filter out any high frequency noise in the signal. Any frequency 
above 7kHz will be filtered at a rate of -40dB/dec. This will ensure that the audio 
going into the Analog to Digital converter is only the RX audio and no other noise 
that could be interfering with the signal. This circuit does have a considerable gain 
on it already, but since the filter has such a small gain it is considered negligible. 

4.6.3  RX Audio Circuit Final Revision 

 

Figure 4.20 RX Audio Circuit Final Revision 

During testing certain aspect of the circuit were determined too space consuming 
and were changed. Once main change was the removal of the low pass filter and 
a first order filter was added to the conditioner. R27 and C15 filter out high 
frequency noise that may have been injected in the audio through the radio 
internals. R20 and R22 provide a 2.5V DC offset that is used to power both the 
LED in the transistor and then the signal is voltage divided to reduce the amplitude 
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to a 3.3V peak to peak. This is done to protect the audio coded going to the Pi. 
The final output of the circuit is a cleaned, amplified version of the audio received 
by the radio. Allowing the pilot to properly hear his comm-check and assess the 
situation accordingly. 
 
The reduction in size also provides an easier time when swapping out any burnt 
components or compromised components should anything in the system fail. 
Allowing the user an easier more streamlined way to troubleshoot the circuit. 
The DC offset of the circuit also provides the transistor T3 with enough base 
current to saturate it. This sends the LED2 into an on state that is weakly on. 
Allowing the increasing amplitude of the audio to make it flicker and create a visual 
representation of the audio being output by the circuit 

4.7  Automatic Gain Control Voltage 

The AGC Buffer Amplifier in our system is used to maintain a constant amplitude 
level for the received signal (sound). Like the comparator, the bridge between the 
AGC and the interface board, allows us to condition the signal before using it. The 
measurement of this signal is one of the crucial functionalities of our system. After 
the AGC is measured, conditioned and transferred to the raspberry pi, it will be 
communicated to the user allowing him or her to know if the signal is weak or 
strong per the distance. Knowing this bring the user an idea of how safe it is to use 
the radio or take a second to debug any issues. 

4.7.1  Conditioner Circuit 

As previously discussed, the input can have a wide range and it’s necessary to 
maintain the output constant. Filtration and amplification were achieved using an 
operation amplifier with multiple stages. The chosen operational amplifier was the 
TL084. The AGC buffer amplifier is composed of a low pass filter and a second 
stage amplifier that splits the gain of the first stage. The Op Amp will produce an 
output potential larger than the potential difference between its input terminals. The 
first stage, low pass filter, will pass signals with a frequency lower than a 7kHz, 
cutoff frequency, and attenuate signals with frequency higher than the cutoff. The 
signal will then fall under the second stage of the circuit, where its previous gain of 
half (.5) will be split, giving an output of unity gain (1), using a negative feedback 
loop to achieve this result. The input of the AGC will go to the negative input of the 
op amp. The constant output of the op amp will continue to next stage of the 
interface board. The AGC buffer design also takes into account the analog to digital 
converter ideal maximum and minimum values of 1V and 5V respectively. Thus 
the gain of the first stage and the voltage division of the second stage is designed 
to get as close as possible to those ranges, without hitting rail on the operational 
amplifiers not going outside of them. Then the second stage of the AGC will divide 
it such that when a strong signal is present the analog to digital converter gets 
close to 5V in input, but when the signal is at its weakest it still gets above 1V of 
input from the AGC circuit. 
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Figure 4.21 Interface Board AGC Schematic 

The range of inputs (measured) for the amplitude gain control from the radio are 
the following: 
 

Voltage Out dBm uV 

2.10 -101 2 

2.34 -96 3.5 

2.50 -91 6 

2.70 -87 10 

2.90 -81 20 

3.10 -76 30 

3.35 -71 70 

4.06 -66 120 

4.30 -61 200 

4.56 -56 350 

4.79 -51 700 

5.01 -46 1200 

5.20 -41 2000 

5.45 -36 3500 

5.70 -31 7000 

6.01 -26 12000 

6.33 -21 20000 

6.45 -20 20000+ 
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Figure 4.22 Relationship between Voltage Out and dBm 

 

Figure 4.23 Relationship between Voltage Out and uV 
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4.7.2  Analog to Digital Converter 

After the AGC voltage is received and conditioned it goes to the analog to digital 
converter. The Analog to digital converter chosen was the MCP3008. 
 

 

Figure 4.24 MCP3008 

 
The purpose of the analog to digital converter (ADC) is to provide the 
microcontroller with a digital number that is proportional to the magnitude of the 
signal, voltage or current, sent from the AGC. The conversion of this signal 
involves some error parameter. The higher the number of bits, resolution, available 
on the ADC, the more precise the conversion can be. The MCP3008 allows a 
precision of 10 bits, this indicates the number of discrete values it can produce 
over the range of analog values. An ADC is defined by the bandwidth available, 
range of frequencies, and its signal to noise ratio. 
 
During testing using the MCP3008 it was noticed that a tradeoff between sampling 
rate and accuracy was happening. Rendering it unable to convert audio signals 
into their respective digital forms. This was assessed and determined that a 
separate system would perform the audio conversion. Otherwise the integrated 
circuit was deemed appropriate for digital quantization of the AGC and Wind 
direction values. 
 

 

Figure 4.25 Data Flow 
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4.8 Audio Codec 

 

Figure 4.26 Audio Codec Pinout 

One of the design changes to the analog to digital conversion process in the final 
iteration of the PCB was the addition of an audio codec for the audio conversion. 
This audio codec is being powered at 3.3V to match the Raspberry Pi 3 for logic 
reasons. The codec is also grounded with the system to allow for any feedback or 
malfunctions to not fry the codec should something go wrong.  
 
This 3.3V source for the codec limited the input range for the RX Audio circuit but 
in the end could be properly implemented into the system and allow to clear audio 
digitization and playback for the TX Audio. This 3.3V source also limited the TX 
audio but was determined unnecessary as the codec did not output at a 3.3V peak 
to peak wave during testing of the playback functionality 

4.9  Wind Data 

4.9.1  Wind Speed 

The anemometer provides our system with 2 important values. The first one being 
the wind speed. The anemometer uses a reed switch that is opened and closed by 
a magnet that passes over the switch after rotating due to the wind. The wind 
speed is determined by counting the closures over a sample period of 2.25 
seconds. This sample is then converted to miles per hours (MPH). 
 

 

Figure 4.27 Anemometer Switch 
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The black and red wires are used to measure the wind speed. The red wire 
represents ground. Connected to the black wire the reed switch can be seen open. 
 

 

Figure 4.28 Anemometer Schematic 

 
Since the anemometer is not powered directly by any source; in order to read from 
the reed switch and convert these reading to real values for the next stage of the 
circuit, a PNP transistor is used. The transistor chosen for pulse conditioning was 
the 2N3906. 
 

 

Figure 4.29 Internal Schematic Diagram 

 
The base of the transistor is connected to a 1k ohm resistor; this resistor ends 
connected with the reed switch from the anemometer. The emitter of the transistor 
is connected to a 3.3V voltage source, and the collector is connected to a 1k ohm 
resistor and then to ground. The functionality of this transistor follows 2 paths. The 
first path being that if the switch is open (no wind) then the base of the transistor 
is not connected to ground; hence, transistor is off, no voltage output at the 
collector from the source. The second path being if the switch is closed (wind 
present) the resistor at the base will be connected to ground, allowing the 3.3V 
source run to the collector and communicate this output to the next stage of the 
circuit. 
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Figure 4.30 Wind Speed Circuit 

4.9.2  Wind Direction 

The second important value that the anemometer provides us with is the direction 
of the wind. The anemometer uses a potentiometer to determine direction. The 
potentiometer can take up to 5V with a current limit of 20mA. The wiring of the 
anemometer, to measure wind direction is the following: 
 

 

Figure 4.31 Anemometer Schematic 

 
The green and yellow wires are used to measure the wind direction. The red wire 
represents ground.  
 
In order to condition the value received from the anemometer, an op amp is used 
again. The TL084 is an op amp with four (4) stages. Two (2) of these stages were 
previously used in the conditioning of the AGC voltage. The input from the wind 
direction is pushed into the positive input V+ of the op amp while the 3.3V is pushed 
into the negative input of the op amp, V-. 
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Figure 4.32 Op-Amp 

The output of the op-amp is then sent to the analog to digital converter, like the 
AGC voltage, this value needs to be transformed into a value that can be accepted 
by the raspberry pi. The analog to digital converter provides the microcontroller 
with an isolated voltage value that is then adjusted in the program to determine the 
right wind direction. 

 

Figure 4.33 Data Flow 

After building the printed circuit board and prototype and testing this circuit, our 
electronics team decided to create a different circuit for conditioning of the wind 
direction. Several issues were seen in the performance in the design of the 
previous circuit. The circuit was replaced simply by a voltage divider. See the 
image below. The input from the wind station can only range from 0 to 5V. The 
raspberry pi input, as previously discussed can only be up to 3.3V. This allowed 
us to create a voltage divider that would give a proportional output according to the 
direction and 5V input. 
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Figure 4.34 

One of the advantages of replacing this circuit was also eliminating an operational 
amplifier. The proper termination of an unused op-amp will be discussed shortly. 

4.10 Master Schematic 

All the circuits shown on the next pages will be implemented into the interface 
board. They will share the same power supply, and will have their inputs coming 
from the King KX-170B VHF Aircraft radio or the anemometer. 
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5 Software Design 

As mentioned in Chapter 3 our software will be running solely on the Raspberry Pi 
in the Python language. The code will utilize the Django framework for the 
database aspect of the software. This will require a model for the database 
structure. This model will include aspects of wind conditions that our sponsor wants 
saved. These attributes include date and time, wind direction, wind speed, variable 
wind conditions if detected, and wind gust if detected, but this list can be expanded 
in the future.  
 
One apparent issue with the software design is the need to constantly check for 
two things – carrier detect and wind conditions – constantly and share variables 
between these processes. Redis will be used to fulfill this need. This will use some 
RAM on the Raspberry Pi, but not enough to decrease the system’s performance 
and is much better than the alternative of constantly writing and reading to a shared 
file between the processes.  
 
This chapter is focused on the overall design of the software using structured 
flowcharts. Every process past the main logic loop is called on by a previous 
process. And with the exception of some initialization function calls, every process 
has one entry point and one exit point. Using this type of flowchart allows easy 
understanding by all parties and a direct correlation to pseudocode.  
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5.1 Main Logic Loop 

 

Figure 5.1 Main Logic Loop 

This is the main loop of our system’s software. It starts with powering on the 
system. Once the system is powered up the software will run through an 
initialization process. At this point the software will check if the Carrier Detect 
(henceforth referred to as CD) signal is high. If the CD signal is high, the software 
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will start the process of “Count Clicks”. This process returns the total number of 
clicks counted and is explained in more detail in Section 5.2. 
 
Now that the software has the number of clicks from the “Count Clicks” process, 
the software will determine what action to perform. If there were three clicks, the 
software will run the “Broadcast Wind Conditions” process, which is explained in 
Section 5.1.2. If there were four clicks, the software will run the “Transmit Radio 
Check” function, which Is explained in Section 5.1.3. If the software detects there 
were less than three or more than four clicks, the software will do nothing and go 
back to check if the CD signal is high. This ensures that if a pilot initiates a function 
or keys their mic for other reasons, the software will perform the necessary function 
and go back to checking for CD.  
 
However, if the CD signal is not high, the software will check if the Update flag (a 
variable set by a separate wind data collecting process) is TRUE and that it has 
not been longer than a specified time since the initial wind conditions broadcast. If 
both of these conditions are true, the software will run the “Broadcast Wind 
Conditions” process. But if either condition fails, the software will do nothing and 
go back to checking for CD. For example, if the specified timeout for wind condition 
updates is 5 minutes, and the update flag is true but it has been 6 minutes since 
the initial wind conditions broadcast, the software will not broadcast an update and 
will go back to checking for CD. 
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5.1.1  Initialization 

 

Figure 5.2 Initialization 

This is the Initialization process of the software. Once the system is powered on, 
this process will be immediately called and executed. In this process there are five 
main commands. First, the computer will connect to the database that will be set 
up. Next, the software will start the web server that will run as long as the pi is 
powered on. Then, the Redis functionality will be initialized, which will allocate 
some space in memory to be used and allow software to use that space in memory. 
Lastly, the wind direction and wind speed functions will be initiated, which will 
gather and record data from the anemometer and is further explained in the 
following section. From there, the software will return back to the Main Loop. 



 
 

65 
 

5.1.1.1  Wind Speed Function 

 

Figure 5.3 Wind Speed Function 

The wind speed function starts by setting the wind speed variable to 0. This is an 
event driven script so the software begins to wait for an interrupt, which would be 
the reed switch on the anemometer closing and means the wind cups have fully 
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revolved once. If an interrupt happens, the wind speed variable in incremented. If 
there is no interrupt detected, the system checks if 2.25 seconds has gone by. If 
not, the software continues to cycle and wait for an interrupt. If 2.25 seconds has 
gone by, then it will calculate the average wind speed and set the peak gust value. 
Before the value is sent to the next function it is divided by 1.15 to convert it to 
knots. Then the wind speed variable is set back to 0 and the software loops back 
and continues waiting for an interrupt. 

5.1.1.2  Wind Direction Function 

 

Figure 5.4 Wind Direction Function 

The wind direction function will behave much in the same way as the wind soeed 
function, however calculating the wind direction is a lot easier than calculating the 
wind speed. This function starts by setting the wind direction to 0 and then 
connecting with the ADC to get the value of wind direction. Then that value is taken 
to the function that calculates the average and variable direction and loops around 
to set the wind direction back to 0. This process takes place every two seconds. 

5.1.1.3  Find Average and Peak Values 

Both the wind speed and wind direction functions have a subprocess that 
calculates the average peak value(s) for that data. Whether the data is wind speed 
or wind direction, the value gets placed in a queue of 20 values and replaces the 
oldest value in that queue. This allows the software to keep track of the most recent 
values in a 40-45 second period. Those values are cycled through to calculate an 
average value and for wind speed, the max value is determined, and for wind 
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direction, the leftmost value and rightmost value is determined. Then all values 
associated with the function get saved and stored on Redis to be used by the 
broadcast winds function as well as commit the data to the database as described 
in section 5.1.3.1. 

5.1.2  Count Clicks Process 

 

Figure 5.5 Count Clicks 

This process counts the total number of times the pilot keys their mic, or number 
of clicks. When this process is activated, the software first sets the clickCounter 
variable to 0. Then it checks that the dwell time, that is the total time that CD is 
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high, is between the user specified min and max times. If it is, the software registers 
this as 1 click and sets clickCounter to 1. Then it checks that the pause time, that 
is the total time between clicks or the total time that CD is low, is between the user 
specified min and max times. If it is, the software goes on to check for another 
appropriate dwell time and then pause time. It keeps alternating these checks while 
also incrementing clickCounter. If at any time the dwell time or pause time is not 
within the user specified min and max times, the process will exit back to the main 
loop and return the latest value for clickCounter.  

5.1.3  Broadcast Wind Conditions Process 
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Figure 5.6 Broadcast Wind Conditions 

This process starts after three clicks have been recognized by the main loop of the 
software. It starts by grabbing the necessary data from the Redis stores. After 
grabbing the wind direction data, wind speed data, wind gust data, and wind 
direction variable data, the process will play an mp3 file that speaks, “Apopka 
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Airport”, “Automated Wind Advisory”, and “winds”. Then the software will determine 
if variable winds are present. If so, the process will say, “between <leftmost wind 
direction> and <rightmost wind direction>”. Next, the process will speak the wind 
direction and determine if there is a peak gust that the user should know about. If 
there is, the system will speak, “Peak gust” and the peak gust wind speed followed 
by “knots”. If there is not a significant peak gust, the process will not do anything 
and return to the main loop. 
. 

5.1.3.1  Save Wind Data to Database 

 

Figure 5.7 Commit Data to Database 

This is the process in which data recorded by the anemometer get committed to 
the database. The first step is to create a model, which is a form of an object for a 
database in Django. After the model is created all the new data can be saved to it. 
The wind speed, wind direction, gust, message string, and current time are all 
saved as parameters in the model. From there, the software will save the entire 
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model to the database using a Django save method. Once all this is completed, 
the process will return to the process that called it. 

5.1.4  Transmit Radio Check 

There are two possible Transmit Radio Check processes with one using an Analog 
to Digital Converter to get incoming audio data and the other using a USB audio 
Interface to record incoming audio. 

5.1.4.1  Transmit Radio Check with Analog to Digital Converter 

 

Figure 5.8 Transmit Radio Check using ADC 
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This “Transmit Radio Check” process is started when the software registers four 
clicks from a user and utilizes the ADC as a way to get incoming audio data. It 
starts by prompting the user for a transmit radio check. Then the software checks 
if a CD is received within a timeout window (probably around 5 seconds). If a CD 
isn’t registered, the software will simply return to the main loop without doing 
anything. If there is a CD registered, four subprocesses will be executed; 
receive/buffer audio data and AGC level, build the AGC message string, build the 
WAV file, and broadcast the WAV file.  
 
These subprocesses use the ADC. When receive/buffer audio data and AGC level 
is called the process receives all the incoming data from the ADC and at some 
point gets the AGC level also from the ADC. Then the process builds a string to 
tag onto the end of the recording when it’s broadcast. Then the WAV file actually 
gets built and lastly the process broadcasts the WAV files. Once these steps are 
completed, the software will return back to the main loop. 
 
Unfortunately, due to the physical limitations of the ADC that was chosen, this 
software loop as well as the following sub processes will not be utilized, but are 
still included as they were part of research and development.  
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5.1.4.2  Clean and Format passed in Audio Data 

 
The “Clean and Format Raw Data” function is the main function responsible for 
taking in the sampled Audio data, take from the MCP3008 Analog to digital 
converter, and makes sure that the data is valid. Once assuring that the data is 
valid, this function will convert the raw data into the required two’s compliment and 
little endian formats. The input and output of this data will be through file input and 
output. We considered simply using a byte array in memory, however the size of 
the audio data can very quickly exceed the amount of spaced occupied by a python 
variable. To avoid this issue, we will simply pull the sampled 10–bit digital reading 
from the analog to digital converter from a text file and then output the 
corresponding formatted audio data into an output text file.   
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The first task of this function is to initialize the file variables that we will need. This 
includes the input file that will be providing the sample values and then the output 
file that will store the formatted data. From here we will begin reading in the 
unformatted audio data and read in the first digital value. This is the first command 
in a loop with the exit condition being represented by the condition block in the flow 
chart. To decide whether or not we need to exit the loop we need to determine if 
we are at the end of a file. In python, this is determined by if we have read in a null 
byte. If we have received a null byte, we exit this subroutine. If we do not receive 
a null byte, then the value read represents the current sample we need to format. 
In order to format the sample, we need to first convert the read in sample from a 
string to an integer. Here is where we need to briefly revisit how the interface board 
is manipulating the audio signal before it is sent through the analog to digital 
converter.  
 
Since the MCP3008 does not read negative values, the interface board is offsetting 
the voltage by 3V. This means that the base value of all the readings read in are 
3V, or have a digital offset value of 522. So the next thing that we need to do is to 
subtract the read in digital value by an offset of 522. This will effectively allow us 
to receive in negative readings, which is important because audio signals have 
both positive and negative readings. Once the offset has been accounted for, we 
need to convert the new calculated sample and encode it into the two’s compliment 
format. Two’s compliment is the specified format used by the WAVE file format 
standard to account and accurately represent the samples taken in the negative 
range of the audio signal. Considering that the MCP3008 is a 10-bit analog to 
digital converter, we will be using 16 bits to represent the sample in the wave files 
we create. This is because the format chunk of a wave file, needs to have the 
sample size in bytes represented so that any software playing the wave file know 
how to effectively read the formatted data. Since 10 bits is more than one byte, we 
need two bytes, or 16 bits, to represent each sample. We are not using multiple 
channels on the MCP3008 to read in multiple audio channels, as for the purposes 
of this design, a Mono channel audio set up is sufficient. This means we only need 
one channel sampling audio data as opposed to two channels for a left and right 
stereo audio setup. If we did have left and right channels, we would need a total of 
four bytes, two bytes for the left and right channel; however, for a single channel 
Mono audio set-up, two bytes are all that is needed. This two-byte window is 
equivalent to a short integer in python. While python instinctively determines the 
type of variable that is stored, which is usually a 32-bit integer, we must tell python 
to force the variable storing the current two’s complimented audio sample to by a 
short integer that is 16 bits, effectively two bytes in length. Also, because wave 
files store these samples in Little Endian format, we must tell python to force this 
short integer to be in this particular byte order standard. Both the tasks of forcing 
the converted two’s complimented audio sample to be a short integer with a length 
of 2 bytes, and forcing the byte order of that short integer to be in a little endian 
format in the same line of code. Therefore, these two steps are represented as a 
single block and are effectively treated as one step in this subroutine. Lastly we 
need to write the formatted audio sample to the output file we will use to build the 
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wave file in another subroutine as well as increase the bytesRead counter by 2. 
This bytesRead counter is responsible for keeping track of the total bytes of raw 
audio data were converted, and will be responsible for returning the amount of 
audio data needed to be written, in bytes, to the finalized data chunk of the wav 
file. We are increasing this bytesRead counter by two, because there are two bytes 
being represented for each digital audio sample we read in from the input file. Since 
the total size of the data needs to be represented in bytes, we must increase this 
counter by two bytes for every sample. 

5.1.4.3  Build WAV File 

 

Figure 5.9 Build WAV File 
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The Build WAV File sub process is used to take the read in Audio data from the 
Audio Channel of the Analog to Digital Converter and create a .wav file that can 
be replayed and broadcasted out back through the radio. To understand this 
process, you must understand a small piece of how WAV files are structured. A 
WAV file is a type of file called a Resource Interchange File Format, or “RIFF”, file. 
RIFF files have a Header Section, depicting what kind of RIFF file (WAV, MP4, 
etc.) it is followed by multiple sections called “chunks”. The WAV format has 2 
chunks which include the “format” chunk and the “data” chunk. The format chunk, 
sets key fields that tell the program reading the file how to handle the audio for 
playback. The Data chunk is essentially the pure audio data in whatever recording 
format was set by the format section. This means that in total the WAV file format 
has 3 main sections: the Header, the Format Chunk, and the Data Chunk. In this 
section there will be three sub sections containing the sub processes to create, 
populate, and format the data for each of these three sections. In order to 
understand each of the sub processes for each section of the WAV file below, we 
will need to go over the necessary fields for each section/chunk of the WAV file. 
These fields are necessary in order to understand the flow of each sub process 
whose purpose is to format and populate the data and fields for each section. 
Therefore, it is also necessary to include these field tables with a brief description 
of the fields which is done below.  
 
Header Section 
 

Field Name Size (in bytes) Endian-ness 

chunkID 4 Big 

chuckSize 4 Little 

riffFormat 4 Big 

  
 
The first section of a WAV file is the Header which consists of 12 bytes of data. 
The first 4 bytes, and the first field of this section is the Chunk ID. This Chunk ID 
is unique since it is the identifier indicating what type of file it is. This field always 
contains a value of “RIFF” to indicate it is a Resource Interchange File Format file. 
The Second field is the chunkSIze; this field is also unique as it contains the size 
of the entire file in bytes minus the 8 bytes of data (for the chunkSize and chunkID) 
in this Header Chunk of the WAV file. Lastly is riffFormat field which tells the 
program reading the file what type of RIFF file it is reading. Since we are writing to 
a WAV file, this field will always be set to “WAVE”.  
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Format Chunk Section  
 

Field Name Size (in bytes) Endian-ness 

chunkID 4 Big 

subChunkSize 4 Little 

audioFormat 2 Little 

numOfChannels 2 Little 

sampleRate 4 Little 

byteRate 4 Little 

blockAlign 2 Little 

bitResolution 2 Little 

  
 
The Format Chunk contains multiple fields that let the program reading the file 
know how the actual audio data is formatted. Like the Header section, the Format 
Chunk contains a chunkID and a chunkSize desribed as subChunkSize. However, 
these fields refer strictly to the data included in the Format Chunk as opposed to 
the entire file. The chunkID is always set to “fmt” indicating it is the format chunk. 
The space character is included in this field to fill out the 4th byte so the file does 
not include a null byte in the middle of the data. Likewise, the subChunkSize field 
includes the entire size of the Format Chunk which will always be 16 bytes in length 
letting the reading program know how many bytes there are before the next 
section. Next is the audioFormat field which in this case will be set to a value of 1 
indicating that the audio data is in a Pulse Code Modulated audio format. Next is 
the numOfChannels field which, as its name implied, contains the number of audio 
channels being sampled. The two fields above are only 2 bytes in size so the 
Endian-ness of these fields are not so important. The sampleRate field and 
byteRate field are pretty self-explanatory and hold the sample rate, in Hz, in which 
the audio was sampled by the Analog to Digital Converter, and the calculated byte 
rate of the audio calculated from the sample rate, number of channels and bit 
resolution. These two fields above are each 4 bytes in length and are formatted in 
Little Endian. The blockAlign field stores the number of bytes per sample in all 
sampled channels. The bitResolution field holds the number of bits per sample.  
 
Data Chunk Section  
 

Field Name Size (in bytes) Endian-ness 

chunkID 4 Big 

subChuckSize 4 Little 

rawData variable Little 

 
The Data Chunk is the final chunk of the WAV file containing the actual audio data 
sampled by the Analog to Digital Converter. Like the two other chunks, the Data 
Chunk contains two fields for the chunkID and the overall size of the rawData. The 
chunkID is always “data” and the subChunkSize is an integer in Little Endian 
Format. The last section of the Data Chunk and the WAV file is the rawData which, 
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as implied, contains the raw audio data read by the Analog to Digital Contverter. 
The main thing to note here is that the rawData field has each sample in Little 
Endian Format. This means with two channel audio with a 16-bit resolution, each 
set of 16 bytes will be in Little Endian Format but the order in which each sample 
was take remains in order. This means the ENTIRE SECTION is NOT in Little 
Endian format, but each SAMPLE is in Little Endian Format. This holds true for 
each channel. The two channels as a whole are NOT Little Endian, but each 
channel is of Little Endian format starting with the left audio channel followed by 
the right audio channel. 
 
In order to build the WAV file from the read in audio data, we first need to build 
each section of the WAV file in byte array buffers that can be directly written to the 
WAV file. We can break these up into three different sub processes: Build Header 
Buffer, Build Format Chunk Buffer, and Build Data Chunk Buffer. These sub 
processes will create, populate, format, and return the byte array buffer for their 
particular sections of the WAV file. However, to populate the header section of the 
WAV file, we need the size of the Format and Data chunks; this means that the 
two sub processes in charge of returning these sections need to happen before 
we create the header buffer that contains the fields for the header section. To make 
things simple we have arranged the sub processes for creating the sections for the 
WAV file in reverse order in order to process and clean the data, format the WAV 
file, and then create the header section. This was every sub process for each 
section of the WAV file has all the information it needs about the other sections 
before running.   
 
We first run the “Build Data Chunk Buffer” sub process in order to clean and format 
the audio data read in by our Analog to Digital Converter as well as populate all of 
the remaining fields of the Data Chunk (these fields are shown below in the Build 
Data Chunk Buffer sub process section). This sub process will return the byte 
buffer containing the formatted bytes for the Data Chunk of the WAV file (which 
includes the formatted audio data from the ADC). Next we run the “Build Format 
Chunk Buffer” sub process to build, populate and format the Format Chunk of the 
WAV file. This sub process will return the byte array buffer containing the Format 
Chunk for the WAV file. Next we run the “Build Header Buffer” sub process which 
will build, populate, format and return the byte array buffer containing the Header 
section for the WAV file. This sub process will need to be given the size of the Data 
Chunk Buffer and the Format Chunk Buffer to properly calculate the fields for the 
header section (these fields are shown below in the “Build Header Buffer” sub 
process section).  
 
After all of the byte array buffers for the three sections of the WAV file have been 
created, formatted, and returned by their respective sub processes, we need to 
write them to the WAV file. The first step here is to actually create and open a WAV 
file. Since each Transmission Check will not need to be saved to the system or 
database and multiple Transmission Checks cannot happen at the same time, we 
can simply and safely write over the existing WAV file, if there is any, and write the 
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new Transmission Check audio data to the WAV file. If there is no existing WAV 
file, we will simply create one. We do not include a decision block to determine if 
we need to create or overwrite the WAV file here, since the python line to create 
and overwrite a file are exactly the same. However, we do need to check whether 
the WAV file opened successfully. If there was error opening the WAV file, we 
return with an error to the parent process, otherwise we continue to writing the 
sections to the WAV file. Next we will simply write each Sections byte array buffer 
to the file in order. First we write the Header Buffer to the WAV file; then we write 
the Format Chunk Buffer to the WAV file, and lastly we write the Data Chunk Buffer 
to the WAV file. We do not have to create sub processes for writing each buffer to 
the WAV file because the write method in Python’s File object is polymorphic and 
can take a single variable or any type of array (including a byte array) as its 
argument. This means the parsing of the buffer to write each byte is abstracted 
away by Python’s File Input/output API and we do not have to worry about creating 
this method ourselves.   After writing the buffers to the Wav File, we will close the 
WAV file and return from the Build WAV File sub process. 
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5.1.4.4  Build Data Chunk Buffer 

 

Figure 5.10 Build Data Chunk Buffer 

The Build Data Chunk Buffer sub process takes in the raw audio data and builds 
the byte array buffer for the Data Chunk of the wav file to be returned to the parent 
“Build WAV File” process. The process starts by running a sub process that will 
clean and format the raw audio data. This sub process will be responsible for 
making sure the raw data is of the correct format and Endian-ness so that I can 
simply be written into the Data Chunk Buffer as is. This process is too long to be 
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included here so it is included as the sub process “Clean and Format passed in 
audio data”. Once we have the returned audio data that has been cleansed and 
formatted, the next step is to measure the size of the formatted audio data returned 
from the “Clean and Format passed in audio data” sub process. This measurement 
will have to be formatted in Little Endian Format but we will do so later. Next using 
the calculated size of the raw audio data, we know how large our Data Chunk 
Buffer will be. The size of this byte array will be the measured size of the formatted 
audio data plus 8 bytes for the chunkID and subChunkSize fields.  
 
Now that we have all of the required fields for the Data Chunk of the WAV file, we 
can start writing those values into the Data Chunk Buffer. First we will write the 
chunkID, whose value will always be “data”, to the first 4 bytes of the Data Chunk 
Buffer. This field does not have to be formatted since it is already in the required 
Big Endian Format. Next we take the calculated size of the formatted audio data 
and convert it into a Little Endian formatted integer so that it can be written into the 
Data Chunk Buffer byte array. After this conversion, we then write the converted 
subChunkSize to the next 4 bytes of the Data Chunk Buffer. Lastly, we can write 
the formatted audio data we got from the “Clean and Format passed in audio data” 
sub process into the remaining byte space of the Data Chunk Buffer. We do not 
need to format here before writing since the sub process formatted the raw audio 
data for us. At this point the Data Chunk Buffer byte array contains the complete 
and correctly formatted Data Chunk and can be returned to the “Build WAV File” 
parent process. 
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5.1.4.5 Build Format Chunk Buffer 

 

Figure 5.11 Build Format Chunk Buffer 

The “Build Format Chunk Buffer” sub process takes in no arguments and builds 
the byte array buffer for the Format Chunk of the wav file to be returned to the 
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parent “Build WAV File” process. The first task is to initialize the byte array that will 
be the Format Chunk Buffer. The Format Chunk of a WAV file is always the same 
size regardless of how large the raw data is since the fields are all of fixed length. 
With all of the field sizes added together the total size of the Format Chunk is 24 
bytes long. Therefore, we can initialize our Format Chunk Buffer byte array to be 
24 bytes in length. From here we will simply go through and write each field of the 
Format Chunk to the buffer making any calculations we need on the way. The first 
field is the chunkID which is always set to “fmt”. Keep in mind that the space 
character must be included to avoid any NULL bytes from being included in the 
middle of the WAV file.  
 
Next we can set the subChunkSize field to be the integer value of 16 in Little 
Endian format. This value represents 16 bytes as opposed to the total size of the 
Format Chunk Buffer (24 bytes) because this field is simply there to let the program 
reading the file know the amount of space, in bytes, that it has to read before it 
gets to the Data Chunk section of the WAV file. The next field in the Format Chunk 
is the audioFormat field which indicates how the raw audio was sampled. Almost 
all Analog to Digital Converters sample using some form of Pulse Code 
Modulation. We indicate this by placing the decimal value of 1 in this field to select 
the PCM method. However, it is important to note that this field is of two bytes in 
length. This means since we stored this integer in a short integer in Little Endian 
format, we need specifically grab the first 2 bytes of the variable to write to the 
Format Chunk Buffer. If we write the full variable, we will exceed the byte limit of 
the field and corrupt the WAV file.  
 
Next we will write the number of channels that we are using into the Format Chunk 
Buffer. Like the audioFormat field, the numOfChannels field is two bytes, so we 
must only grab the first 2 bytes of the short integer (Little Endian formatted) 
variable. This field’s value can either be a decimal value of 1 or 2 depending if you 
have a mono or stereo audio set up. Since we are grabbing the audio for the 
Transmission Check from the speaker pins of the radio, we will be using 2 channels 
and will set this field to a value of 2. Next we will set the following 4 bytes of the 
Format Chunk Buffer to be the sampling rate at which we sampled the audio in 
Hertz. This means that we will be setting this value to be 44100 represented by a 
Little Endian Formatted Integer as we want to sample double the frequency of any 
sound audible to the human ear per the Nyquest Sampling Theorem.  To write the 
following fields, we will need to calculate them in reverse order to avoid making the 
same calculations multiple times to improve efficiency. We can make all of the 
calculations using the Little Endian Format for integers to avoid having to format 
each field before writing the field values. This way all of the field values are already 
in the correct format. We know the bitResolution by default and will set this value 
to bit resolution of the Analog to Digital Converter we are using. Using the bit 
resolution, we are able calculate the blockAlign by dividing the bitResolution by 8 
and then multiplying by the number of channels we are sampling. Then lastly we 
can calculate the byteRate field by multiplying the sample rate number of channels 
and block align fields together. Now we can simply write each field to the Format 
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Chunk Buffer byte array in order. First we write the byteRate field to the Format 
Chunk Buffer as is since the field is 4 bytes in length. Then we write the first 2 
bytes of both the blockAlign and bitResolution fields, respectively, since these 
fields are only 2 bytes in length from the Format Chunk’s prospective in the WAV 
file. From here we have the complete byte array for the Format Chunk Buffer and 
can return it to the “Build WAV File” parent process. 

5.1.4.6  Build Header Buffer 

 

Figure 5.12 Build Header Buffer 

The “Build Header Buffer” sub process takes in the Data Chunk Buffer Size and 
the Format Chunk Buffer size as arguments to build the byte array buffer for the 
Header Chunk of the WAV file to be returned to the parent “Build WAV File” 
process. The first task of this sub process is to initialize the Header Buffer. Since 
the Header Chunk of a WAV file is always the same size, we can initialize the 
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Header Buffer byte array to be 12 bytes in length for the three 4 byte long fields. 
We can start by writing the chunkID field to the buffer. As stated above, this value 
tells the program reading the WAV file what type of file it is reading. This field is 
always the string “RIFF” and can be written to the Header Buffer in Big Endian 
Format.  
 
Next we calculate the total size of the WAV file which can be done by adding the 
passed in sizes of the Format Chunk Buffer and the Data Chunk Buffer plus 4 for 
the remaining riffFormat field in the Header Chunk.  We do not need to include the 
8 bytes from the first two fields since the purpose of the chunkSize is to tell the 
program reading the WAV file how many bytes it needs to read before it reaches 
the end of the file from the point it’s at (which is already past the first 2 fields of the 
Header Chunk). From here we can write the resulting chunkSize field to the second 
4 bytes of the Header Buffer in Little Endian format. Lastly, we need to write the 
riffFormat field to the Header Buffer. This value simply tells the program reading 
the WAV file what type of RIFF file it is reading. For WAV files this value is always 
the string “WAVE” and can be written to the last 4 bytes of the Header Buffer in 
Big Endian format. From here the Header Buffer is contains the complete formatted 
contents of the Header Chunk and this sub process can return the Header Buffer 
byte array to the “Build WAV File” parent Process Communication with Interface 
Board. 
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5.1.4.7  Transmit Radio Check Process with USB Audio Device 
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Figure 5.13 Transmit Radio Check 

This “Transmit Radio Check” process is started when the software registers four 
clicks from a user and utilizes a USB audio interface. It starts by prompting the 
user for a transmit radio check. Then the software checks if a CD is received within 
a timeout window of 3 seconds. If a CD isn’t registered, the software will simply 
return to the main loop without doing anything. If there is a CD registered, the 
process will start recording audio from the USB interface. While it’s recording, the 
AGC level will be grabbed from the ADC. At this point the radio will be put into 
transmit mode and the recorded audio as well as the calculated power level will be 
broadcast to the user, then the radio will be taken out of transmit mode. Once these 
steps are completed, the software will return back to the main loop.  
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5.1.5  Pin Layout and SPI 

 

Figure 5.14 Raspberry Pi 3 GPIO Header Layout 

Interface Board Physical Pin # GPIO Logical Pin # 

TTLPTT 13 27 

TTLCD 11 17 

SPI (MISO) 21 9 

SPI (MOSI) 19 10 

SPI (SCLK) 23 11 

SPI (CE) 24 8 

Pulse Counter 38 20 

TX Audio 3.5mm Audio Jack - 

RX Audio USB Audio Card - 

 
Above is an image of all 40 of the GPIO pins available on the Raspberry Pi 3 
showing their physical pin number as well as their software available GPIO pin 
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number. Above you will also find a table showing which connection from the 
interface board is going to what pin on the Raspberry Pi. It is really important to 
note that not all of these available pins are general purpose pins and have specific 
purposes and all GPIO pins both receive and transmit digital signals. This means 
that these particular pins cannot be used; a good example of this includes the 
various ground pins located on the GPIO pinout. Concerning all of the inputs and 
outputs between the Raspberry Pi’s GPIO pins and the Interface board, there 5 
connections to mention: TTL PTT (GPIO pin 27), TTL CD (GPIO pin 17), SPI Bus 
(hardware spi), Pulse counter (GPIO pin 20), TX Audio Out (Onboard Audio Jack), 
and RX Audio In (USB Sound Card).  
 
The TTL PTT signal will be connected from the Raspberry Pi 3’s GPIO pin number 
27 to the interface board. This connection will be active high, meaning that when 
the software wishes to broadcast a signal, it will set this pin high letting the interface 
board know to send the appropriate signals to the radio. Secondly is the TTL CD 
which will connect the Interface board to Logic GPIO pin 17 on the Raspberry Pi’s 
external pins. This pin will be active high, and upon the pin going into a high state, 
the software will be notified that there is a signal being detected by the radio. This 
pin will be utilized to select certain function options, such as WX transmit and TX 
Check, as well as let the software know when to start reading in audio data from 
the SPI bus. The SPI bus, or Serial Peripheral Interface bus, is a communication 
method implemented on many proprietary chips like the MCP3008 Analog to 
Digital Converter we are using. This communication protocol involves 4 main 
connections between the two components that are transferring and receiving data. 
While most of the connections run straight from the MCP3008 ADC on the interface 
board to the Raspberry Pi, the main data line coming from the MCP3008 to the 
Raspberry Pi must run through a voltage divider since the MCP3008 is running on 
a 5V logic digital level and the Raspberry Pi is running on a 3.3V digital logic level; 
so from here on out I will refer to the connections as being in between the interface 
board and the Raspberry Pi’s hardware SPI pins.  
 
The 4 connections for the SPI bus include Master in Slave Out (MISO), Master Out 
Slave In (MOSI), The Clock Line (SCLK), and the Chip Enable Line (CE). All of 
these connections are digital and active high with the exception of the CE signal 
which is a digital active low signal. In this architecture we will refer to the Raspberry 
Pi as the “Master” and the Interface Board as the “Slave”, due to the fact that the 
Raspberry Pi will be driving the actions of reading and writing data while the 
Interface Board will simply be providing and receiving data on command. All SPI 
connections will be connected to the hardware SPI pins as shown in the table 
above. The MISO line will be for reading in data from the Interface board that has 
been Analog to Digitally converted. The MOSI line will be for the Raspberry Pi to 
send data to the Interface board essentially telling the ADC which channel to read 
and what data to send back. The SCLK line is to keep the clocks of the Raspberry 
Pi and the ADC located on the Interface board synchronized. Lastly the CE line 
will be set to low whenever the Raspberry Pi wants to read from that chip. Looking 
at the Pulse Counter connection, this connection is coming from the Interface 
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board and will be set to High in pulses as the wind direction moves. The Raspberry 
Pi will monitor this pi and keep track of how many pulses it gets, helping it 
determine the wind speed coming from the sensor. Lastly we have the TX Audio 
which will be coming from the Raspberry Pi to the Interface Board from the Audio 
Jack mounted onto the Raspberry Pi. As the name suggests this will be the signal, 
that when TTL PTT is set to a digital High, will be sent to the Interface board to be 
broadcast out over the radio channel. 

5.1.6  MCP3008 

5.1.6.1  Background Information 

For the Analog to Digital Converter we chose to use the MCP3008. This particular 
ADC as chosen due to the fact that the software libraries and interfaces for this 
chip were already open-sourced by Adafruit Industries. This made reading from 
the chip easier and allowed us to focus more on what we were going to do with the 
information provided to us as opposed to spending time writing code to get the 
information we needed. Secondly we chose this chip from a software standpoint 
because we can use MCP3008 to read all of our analog signals as opposed to just 
a group of them. This versatility provides for a lot of code reuse as instead of having 
to read data from multiple sources we can read all of our sensor data from one 
chip.   
  
It is important to note that the PCM1862 was a viable option for reading the Audio 
Data specifically as we were not sure whether or not that reading our audio data 
from the same ADC as other data would affect the quality of the audio read in. The 
PCM1862 is a dedicated audio ADC that has built in filters and Automatic Gain 
Control. However, we concluded that having a separate, dedicated Audio ADC 
was not needed as we were already using the interface board to filter and add gain 
to the signal. Also the other analog signals that the MCP3008 would be reading 
are sampled at extremely low sampling rates. This means that we do not have to 
worry about the other components lowing the MCP3008’s total sample rate to a 
low enough rate in which audio could not be affectively read. Our final conclusion 
was that the MCP3008 would be accurate and fast enough to sample and convert 
all of the analog signals coming from our external sensors as well as audio data. 

5.1.6.2  Analog to Digital Conversion 

Since we will be get values from the MCP3008 that have been converted from an 
audio signal that has been amplified and offset by 3V, for the software it will be 
important to take note of the relationship between the input analog voltage and the 
outputted digital signal. Taking a look at the MCP3008’s datasheet, we are 
provided an estimated equation taking in the voltage level of the received analog 
input and outputting the expected digital value from the chip. For our system we 
are operating the chip at a Vref of 5V. The equation is provided below. Using this 
equation from the datasheet, it was important to compare the values expected to 
the actual values we were getting from the system. Below is a table that provides 
the sampled voltage level from an inputted analog wave and outputs the 10-bit 
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Value read from the software sampling the ADC at 8 KHz. The third column is the 
output of the equation provided by the MCP3008’s datasheet using the 5V Vref 
and the Voltage level from column one as inputs. 

𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 𝐶𝑜𝑑𝑒 =
1024 × 𝑉𝐼𝑁

𝑉𝑅𝐸𝐹
 

Where: 

𝑉𝐼𝑁 = analog input voltage 
𝑉𝑅𝐸𝐹 = reference voltage 

 

Voltage 
Level 

10-bit 
Value 

Expected 
Value 

 Voltage 
Level 

10-bit 
Value 

Expected 
Value 

4.99 1023 1022  3.44 608 705 

4.97 1019 1018  3.4 600 697 

4.96 1017 1016  3.34 586 685 

4.95 1015 1014  3.29 578 674 

4.94 1013 1012  3.25 569 666 

4.93 1011 1010  3.19 559 654 

4.92 1010 1008   3.14 548 644 

4.91 1008 1006  3.1 541 635 

4.89 1003 1002  3.06 533 627 

4.84 990 992  3 522 615 

4.8 978 984  2.94 511 603 

4.73 954 969  2.9 504 594 

4.71 945 965  2.85 494 584 

4.64 919 951  2.8 486 574 

4.59 902 941  2.75 478 564 

4.54 886 930  2.69 468 551 

4.5 875 922  2.65 460 543 

4.44 856 910  2.6 452 533 

4.4 842 902  2.55 442 523 

4.34 824 889  2.5 433 513 

4.29 808 879  2.45 425 502 

4.2 784 861  2.39 415 490 

4.15 768 850  2.35 407 482 

4.1 756 840  2.29 399 469 

4 731 820  2.25 391 461 

3.96 720 812  2.2 382 451 

3.9 705 799  2.15 375 441 

3.84 692 787  2.09 364 429 

3.81 686 781  2.05 359 420 

3.74 671 766  1.99 347 408 

3.7 661 758  1.95 341 400 

3.66 654 750  1.9 331 390 

3.6 639 738  1.85 323 379 

3.55 629 728  1.8 315 369 
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3.5 619 717  1.75 308 359 

1.7 300 349  0.64 124 132 

1.64 291 336  0.6 116 123 

1.6 282 328  0.55 108 113 

1.53 272 314  0.5 98 103 

1.5 266 308  0.45 90 93 

1.45 259 297  0.4 81 82 

1.39 248 285  0.35 72 72 

1.34 240 275  0.29 61 60 

1.29 231 265  0.25 53 52 

1.25 225 257  0.2 43 41 

1.19 216 244  0.15 33 31 

1.14 207 234  0.09 20 19 

1.1 200 226  0.05 12 11 

1.05 192 216  0.045 10 10 

1 183 205  0.039 8 8 

0.95 176 195  0.029 6 6 

0.9 168 185  0.021 4 5 

0.85 158 175  0.016 3 4 

0.79 149 162  0.003 1 1 

0.74 141 152  0 0 0 

0.7 133 144     

 
To better visualize the relationship between the expected values from the equation 
and the actual values that we are reading, we graphed the data from the table 
above. 

 

Figure 5.15 Relationship between Input Voltage and 10-bit Value with Expected 

After graphing the relationships of both the Voltage Level to Read 10-bit Digital 
value and the Voltage level to the Expected digital value from the equation 
provided by the datasheet, it is important to note that there is some slight deviation 
from the linear behavior the equation provided by the datasheet expects. Taking a 
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look at the graphed chart above (generated from the table above), you can see 
that the read 10 bit digital values are relatively linear, but express some non–linear 
behavior between 1V and 4.5V. In this range the reading we took began to deviate 
slightly from the expected values generated by the equation from the datasheet. 
The non-linearity here may be due to the operation system driving the sampling of 
the chip. Most ADCs are run on microcontrollers that run precompiled and fast 
code, where in this case the operating system is in control of almost every part of 
the system. That being said, the non-linearity is within an acceptable range for the 
data we are sampling and we will proceed with using the MCP3008. 

5.1.6.3  MCP3008 Communication Logic 

 

Figure 5.16 MCP3008 Logic 

Communication between the Raspberry Pi and the MCP3008 Analog to Digital 
converter happens over the hardware SPI interface between the two. However, for 
the Raspberry Pi to read from the MCP3008 there is a certain protocol in which to 
communicate that read action. While this communication process will be handled 
by the software using the Adafruit_MCP_3008 python library, the process in which 
this is depicted by the image above taken from MCP3008’s datasheet. The first 
step is for the Raspberry Pi to let the MCP3008 know it will be selecting a function 
from that chip; it does this by setting the CE pin low. From here the Raspberry Pi 
will send a series of configuration bits over the SPI_MOSI line. These configuration 
bits and their functions are shown in the following table. 
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Figure 5.17 MCP3008 Channels 

When the MCP3008 receives these configuration bits, it will know what function to 
perform and returns the necessary data back over the SPI_MISO line prefaced by 
a Null bit. This Null bit lets the Raspberry Pi know it should begin receiving data. 
For example, if the Raspberry Pi sent over the bit sequence 1000 out over the 
SPI_MOSI line, the MCP3008 would read the Analog signal from channel 0, 
convert it to a digital value, and send that digital number back over the SPI_MISO 
line prefaced by a Null bit. After the data has finished transmitting, the Raspberry 
Pi will reset the SPI_CE pin back to High so that the chip will not receive any 
unintended signals from the Raspberry Pi. 
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5.2 Configuration Screen 

The configuration screen is a sub-section of the website that will allow a 
administrative user to change certain configurations and parameters that the 
AirBud automatic field based operator will use in its main scripts and programs. 
The configuration is simply a Django Python Framework module that, when logging 
into the Django administration webpage, will allow the user to view and change the 
listed configurations. The URL for the page is 
http://192.168.20.1/admin/airbudconfiguration, and can be viewed from any 
computer connected to the Raspberry Pi via Ethernet cable. 
 

 

Figure 5.18 Screenshot of Configuration Screen 

Each of the above entries represents a setting that can be configured in the main 
system. Changing and saving them here will update them in the main system as 
soon as the raspberry pi is restarted, since these properties are only loading in the 
main program on startup. 
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5.3 Web Server 

The web server for this project will be developed using Python’s Django Web 
Framework. The server will consist of three main modules: the settings module, 
described above, the data module, used for storing wind information read from the 
main programs in the database, and the main module (provided by Django) that 
combines all of the modules and serves the appropriate web pages. The web 
server will also contain certain asynchronous tasks that will allow data to be stored 
asynchronously into the database. This prevents the main scripts, providing the 
data from the wind station and main system, from freezing if the web server gets 
overwhelmed by web requests to grab the wind data and store it in the database.  
 
We chose to use Python’s Django Web Framework as our base server for a couple 
of reasons. First it allowed us to abstract away the database queries and set up. 
Django allows the programmer to write the database schema, using a class and 
object programming style. This lets us treat each database entry as an object and 
handles the SQL behind the scenes. This was convenient for us and allowed us to 
focus on building the main system. Secondly, the Django Web Framework is 
created and used in the python language, which was the programming language 
we were already using for our main program. This would insure that the scripts and 
the web server would be compatible programmatically should they need to be 
integrated, and/or share resources for any reason. 
 
A user can access the web server by connecting to the DHCP server also on the 
raspberry pi. Since the website is only intended to be accessed by an operator on 
the ground, we decided to utilize the on board Ethernet port as the main means of 
connecting to the web server and configuration screen. The Raspberry Pi DNS 
masks the IP address 192.168.20.1 as the static url for the raspberry pi, so an 
computer connected to it from the Ethernet port can access the webserver by 
browsing to that address in their preferred web browser.  
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6 Integration, Prototype, and Final Design 

6.1 Interface Board Breadboarding 

For breadboarding and testing purposes the operational amplifiers used were 
TL084s due to ease of access. But for the practical application of this circuits the 
operational amplifiers used will be LM324s. This is because in the final PCB the 
interface board will have no negative DC power sources. The behaviors of both 
operational amplifiers under the current application is similar enough to the point 
where their performance is interchangeable if power sources were not to be 
considered. 
 

6.1.1 PTT Circuit 

 

Figure 6.1 PTT Circuit Breadboard 

6.1.2 RX Audio Circuit 

 

Figure 6.2 RX Audio Circuit Breadboard 
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6.1.3 TX Audio Circuit 

 

Figure 6.3 TX Audio Compressor Circuit Breadboard 

 

Figure 6.4 TX Audio Low Pass Filter Circuit Breadboard 
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Figure 6.5 Section of Overall Breadboard 

For prototyping, several 3.3V regulators were tested. The first one to be tested was 
the LM317. The input to the regulator is 13.8V, this is also connected to a .1uF 
decoupling capacitor. This capacitor adds fast charge storage, commonly used 
when connected to a power supply which are relatively slow. The second pin on 
the regulator is connected to 300ohm resistor and a 240ohm resistor. The value of 
300ohm was found by connecting a potentiometer to the second pin and adjusting 
it until 3.3V were reached. Once the output was set and constant, the 
potentiometer was removed and its set value was measured so it could be 
substituted with a single value resistor. The output of the regulator is also 
connected to a bypass or decoupling 1uF capacitor that serves the same purpose 
of adding fast charge storage. Below is the schematic for the 3.3V regulator setup. 
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6.1.4  3.3V Regulator Circuit 

 

Figure 6.6 

As mentioned this circuit was used for prototyping. The 3.3V output was used for 
the logical output of the comparator. Although there is a second use of 3.3V on our 
system, to the raspberry pi, this regulator is not able to provide the necessary 
current to power the microcontroller. The picture below shows the regulator 
connected to the resistors and capacitor. 
 

 

Figure 6.7 3.3V Regulator Circuit Breadboard 

The image below shows the output of the 3.3V regulator along with the input 
connected to the oscilloscope. The input is 13.8V and out 3.3V.  
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Figure 6.8 

6.1.5  Carrier Detect Comparator Circuit 

Another segment of the prototype is the comparator circuit. The 8.5k ohm and 10k 
ohm resistors can be seen at the left of the picture where the 13.8V input comes 
from the supply and it’s then divided. Note that on the image, pin 1 of the 
comparator is at the bottom right. 
 

 

Figure 6.9 Comparator Circuit Breadboard 
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6.1.6  AGC Conditioner Circuit 

Below is the TL084 op amp used for the AGC. The input power rails can be seen 
on the left and right of the image and can also be seen on the main image of the 
breadboard. The input during the prototype testing was 13.8V. The voltage for 
operation that will be given to the op amp in the final design will be 12V from the 
12V regulator. The op amp can provide with up to 4 stages to use. The AGC circuit, 
as previously discussed, uses the first two stages which can be observed on the 
left side of the op amp. 

 

Figure 6.10 AGC Conditioner Circuit Breadboard 

The PNP transistor used for prototyping was the TIP42C. This is a power 
transistor, this will suffice our use for testing and seeing the change in wind speed 
but it will not be quick enough for the final system. A switching transistor will be 
used in the final system. This transistor was used for testing only like the 3.3V 
regulator. Below is the setup on the breadboard as seen on the schematic of the 
overall system. The 3.3V rail is given by the 3.3V regulator and used when the 
wind speed input (left) is connected to ground. Overall acting as a switch for the 
3.3V source according to the wind speed. This 3.3V output is then sent to the 
raspberry pi through a general input/output pin. 
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Figure 6.11 

The image below continues to show the output and input of and to the PNP 
transistor to measure the wind speed. The input and output were connected to the 
oscilloscope and displayed below. Channel 1 output and channel 2 input. It’s 
important to note that when there is wind speed being measured the output of the 
transistor becomes the square wave output with a magnitude of 3.3V as seen on 
the image.   
 

 

Figure 6.12 

Added to the list of components tested is the 5V regulator. This is the regulator 
used when measuring the wind direction. This 5V input is connected to the wind 
vane and ground, the output of the wind vane is sent to the op amp and then to 
the analog and digital converter. The breadboard circuit below shows the input and 
output along with the setup of the regulator. A .1pF capacitor was added at the 
output to ground to prevent oscillations. 
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Figure 6.13 

The image below shows the output of the 5V regulator along with the input connected to 
the oscilloscope. Two channels were used and can be seen in this image. The input of 
13.8V and the of output 5V.  

 

Figure 6.14 

The last voltage regulator used in our system is the 12V regulator. The output of 
this regulator is used to power the positive input of the TL084 operational amplifier. 
The image below shows the setup used on the breadboard for testing purposes. 
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Input to device of 13.8V and output of 12V. A capacitor was added to the output 
and ground to prevent oscillations. 

 

Figure 6.15 

The image below shows the output of the 12V regulator along with the input 
connected to the oscilloscope. Two channels were used and can be seen in this 
image. The input of 13.8V and the of output 12V. If compared to the 5V and 3.3V 
regulators it is clear to see the constant but different outputs of each one of them 
sharing a constant input. 
 

 

Figure 6.16 

 

6.2 Signal Conditioning Testing 

All of the following tests were during the bread boarding phase and do not 
represent the final values or ranger due to final tests during the full system build. 
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Though they are indicative of the intent behind each circuit design. This is 
addressing the desire of a DC output, high frequency noise filtration and final 
amplification. 

6.2.1 RX Audio Circuit 

Testing the RX Audio signal circuit, the input to it was a simulation of the output 
signal of the radio. After extensive testing with the KX-170B VHF Aircraft radio and 
various input made into pin 39. The received signal by our oscilloscope was a 
maximum signal of 320mV peak to peak with some offset. This signal was then 
pushed through the circuit and measured at various points to ensure the circuit 
was behaving was designed 
 

 

Figure 6.17 RX Audio Input 

With the 320mV peak to peak signal being passed through a polarized 1µF 
capacitor the 80mV DC offset was removed. 
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Figure 6.18 RX Audio Input with No Offset 

Passing the signal through a conditioning circuit for the analog to digital converter, 
the signal is again offset with a 2.5V reference voltage provided by the 5V power 
supply in the interface board. 
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Figure 6.19 Filtered RX Audio at 4KHz 

Finally, after the signal is offset by the conditioning circuit it is passed through a 
final low pass filter to ensure that the audio is not affected by any outside noise. It 
should be noted that due to the equipment being used to measure the signal while 
also having a DC offset made it so that the scale used to measure the signal be 
kept relatively high. Leading to the equipment having trouble reading the input 
frequency. But because the signal being generated was through a function 
generator and previous measurements demonstrated the frequency of the signal 
was accurate at 4kHz. 
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Figure 6.20 Filtered RX Audio at 9KHz 

 

Figure 6.21 RX Audio Circuit Through Low Pass Filter 
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As it can be seen the amplitude of the signal when at higher frequencies is 
considerably lower than that of the 4kHz used in radio communication. Ensuring 
that a 2nd order Butterworth low pass filter will be enough to properly filter out any 
noise in the RX Audio prior to digital conversion. Though a higher order Butterworth 
would be possible it would not serve much purpose since noise is going to be in 
the MHz range. This higher order Butterworth would not only require more 
components, this increasing costs it would also serve little to no purpose. With the 
current gain drop at higher frequencies once MHz are reached the signal would be 
almost nonexistent. 

6.2.2  AGC Signal 

Since the AGC signal coming from the King KX-170B is a DC signal connecting 
the circuit input into a DC power source, and using that DC voltage as the AGC 
values was used for circuit testing. This provided information on how the circuit 
would behave once finally interfaced with the King KX-170B VHF Aircraft Radio. 
 

AGC In (V) AGC Stage I 
Out (V) 

AGC Stage II 
Out (V) 

2.1 3.09 1.54 

2.34 3.44 1.73 

2.5 3.68 1.84 

2.7 3.97 1.98 

2.9 4.26 2.14 

3.1 4.56 2.28 

3.35 4.93 2.67 

4.06 5.97 2.99 

4.3 6.32 3.16 

4.56 6.7 3.36 

4.79 7.04 3.53 

5.01 7.37 3.69 

5.2 7.65 3.83 

5.45 8.02 4.01 

5.7 8.38 4.2 

6.01 8.83 4.42 

6.33 9.31 4.66 

6.45 9.49 4.75 

 
 
As it can be observed the AGC signal being output into the analog to digital 
converter in the interface board prior to the Raspberry Pi 3 is properly within the 
range of the converter. Keeping into consideration the range the signal is able to 
achieve out of the first stage. This is because the operational amplifier would start 
to approach rail voltage and start giving inaccurate gain if the output came too 
close to rail. Thus a conservative maximum bellow 10V is appropriate for a 12V 
Vcc. This also translated into the input for the analog to digital converter voltage 
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divider. Values for the resistors were selected to provide an input close to the 1V 
minimum input, for accuracy purposes, and the 5V maximum of the analog to 
digital converter input. 
 

 

Figure 6.22 

6.2.3  PTT Signal 

When testing the PTT signal the idea behind it was to check that when the test 
power supply or the GPIO pin input from the Raspberry Pi 3 would result in a 
voltage in the King KX-170B VHF Aircraft radio input. This was done by running a 
3.3V signal through the intended input whilst having the acting ‘switch’ opened to 
simulate the Raspberry Pi 3 having an input. Then the test circuit was tested. This 
circuit had the acting switch closed and the Raspberry Pi 3 input set to ground, as 
the Raspberry Pi 3 would be acting as ground in this specific case. 

 

Figure 6.23 
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When the input is simulated as the GPIO pin the output of the PTT to the King KX-
170B radio is a voltage of 330mV. This is enough to ground the relay inside the 
radio and set it into transmit mode.  

 

Figure 6.24 

As it can be noted the voltage coming out when using the test voltage supply is 
slightly lower than that of the GPIO pin. This is due to the voltage divide caused 
by the resistors. This is to ensure that the current going into the Raspberry Pi 3 
remains bellow 16mA at all time.  

6.3 Interface Board Protoboard Design 

During final stages of design after extensive system testing with the bread board 
a protoboard was made to create a fully integrated system. This system integration 
was then tested to finalize values in each circuit and create a final adaption that 
would fit the King 175B VHF aircraft radio.  
 
The protoboard included all interface board complexities: 

 Testing push buttons 

 LEDs 

 3.5mm audio cables (simulating audio jacks) 

 TX audio input and output potentiometers 

The protoboard was tested thoroughly to create a final PCB design and reduce 
costs by allowing less PCBs to be printed as values would be known and no 
revisions would be necessary. This was the original intention. 
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Figure 6.25 Interface Board Protoboard 

Using the TX audio potentiometers, it was determined that complete injection of 
the audio generated by the protobard was fine. This was due to the original circuit 
having a gain of 0.5. This was noticed during protobard testing and adjusted to a 
gain of ~0.9 resulting in an adequate audio amplitude to inject into the radio. 
 
Using the LEDs it was confirmed that the testing switches for both PTT and Carrier 
Detect were fully functional and practical for use in the interface board. The LED 
in PTT turned on when the radio was set into transmission mode, but remained off 
otherwise. This was true whether the pi, test switch or microphone was used to set 
it into transmit mode. The logic of the carried detect LED was one whenever the 
radio had an incoming transmission or the switch grounded the comparator. The 
LED for wind direction remained off between 0 and ~135 degrees as the voltage 
output was below the turn on voltage of the LED, but it still represented a working 
circuit as any direction above 135 turned the LED on. The LED in RX audio varied 
in intensity as the signal was being pushed through and the TX audio blinked with 
audio. This was because the RX audio LED has an offset that keeps it on. But the 
injected audio increases the brightness making it flicker but not turn off.  
 
The 3.5mm audio cables were soldered onto the system because it was simpler 
than finding 3.5mm jacks and using those, later removed once the testing was 
complete for a cleaner more presentable board. These input the audio from RX to 
the codec 3.5mm jack and output the codec TX audio into the TX compressor. 
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6.4 Printed Circuit Board 

After building all the circuits separately and building a soldered prototype, we built 
the first iteration of the printed circuit board. This iteration allowed us to find more 
bugs on our circuit that were over looked on the first prototype. In addition, the only 
circuit that was not built component by component prior to this first version of the 
PCB was the audio CODEC. This circuit was design on the PCB. The images 
below show the first PCB before built and the PCB after built.  
 
Unfortunately, the first iteration of the PCB wasn’t perfect. The failure point of the 
first iteration of the PCB was the audio CODEC. It was decided to move this circuit 
out of the second design and replace it with the actual board used for development. 
A comparison between each board can also be seen in the images below as well 
as the new placement of components. This new placement of components was 
adjusted to give the user the facility to plug components in and out and view the 
LEDS in an organize manner as well as isolating the inputs from the radio and 
inputs to the pi. The PCB layout follows a user-friendly view like the schematic. 
 

 

Figure 6.26 PCB Version 1 without components 
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Figure 6.27 PCB Version 1 with components 
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Figure 6.28 PCB Version 2 with components 

 

 

Figure 6.29 Comparison of PCB Version 1 and PCB Version 2 
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6.5 PCB EagleCAD Wiring  

The images below show the board layout of the PCB on EagleCAD. The wiring 
was done manually with minimum use of the autorouter function in order to prevent 
the use of many drill holes and allow the desired placement and trace thickness 
up to the user. The first image of the layout was taken from the first iteration of the 
PCB followed by the second iteration of the PCB. Per request of our sponsor some 
of the thickness of the traces that conduct the power were adjusted as well as the 
headers for the placement of the audio CODEC. This second version still had some 
minor bugs that were accessible to minor fixes, as seen on the image. A third 
iteration of the board is expected to be designed to have all these minor issues 
fixed. 
 

 

Figure 6.30 PCB Version 1 EagleCad Diagram 
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Figure 6.31 PCB Version 2 EagleCad Diagram 

7 Testing 

7.1 3.3V Voltage Regulator Testing Procedures 

To test the Interface Board 3.3V Voltage Regulator, follow the testing procedure 
below. 
 

Process Expected Outcome 

Set up the 3.3V regulator with 
required components for correct 
output.  Capacitors and resistors are 
the only components needed. 
Capacitors connected at the input and 
output to prevent oscillation. 

No output yet as there is no input 
connected 

Connect 13.8V input along with 
connections to voltage meter or 
oscilloscope for measurement 
purposes. 

Once input is ON, output should be 
3.3V 

Drop input voltage to 5.1V   Voltage output should still be 3.3V 

Drop input voltage to less than 5V Output will not be a constant 3.3V 
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7.2 5V Voltage Regulator Testing Procedures 

To test the Interface Board 5V Voltage Regulator, follow the testing procedure 
below. 
 

Process Expected Outcome 

Set up the 5V regulator with required 
components for correct output.  
Capacitors are the only components 
needed. Connected at the input and 
output to prevent oscillation. 

No output yet as there is no input 
connected 

Connect 13.8V input along with 
connections to voltage meter or 
oscilloscope for measurement 
purposes. 

Once input is ON, output should be 5V 

Drop input voltage to 7V   Voltage output should still be 5V 

Drop input voltage to less than 6V Output will not be a constant 5V 

 

7.3 12V Voltage Regulator Testing Procedures 

To test the Interface Board 12V Voltage Regulator, follow the testing procedure 
below. 
 

Process Expected Outcome 

Set up the 12V regulator with required 
components for correct output.  
Capacitors are the only components 
needed. Connected at the input and 
output to prevent oscillation. 

No output yet as there is no input 
connected 

Connect 13.8V input along with 
connections to voltage meter or 
oscilloscope for measurement 
purposes. 

Once input is ON, output should be 
12V 

Drop input voltage to 13.1V Voltage output should still be 12V 

Drop input voltage to less than 13V Output will not be a constant 12V 
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7.4 -12V Voltage Regulator Testing Procedures 

To test the Interface Board -12V Voltage Regulator, follow the testing procedure 
below. 
 

Process Expected Outcome 

Set up the interface board by 
connecting it to the main 13.8V power 
supply 

LED’s in interface board should be lit 
up to indicate power is running 
through the system. 

Using a multimeter connect the 
positive end to the input and the 
negative to ground. Test the input 
voltage. 

5V should be displayed on the 
multimeter. 

Using a multimeter connect the 
positive end to the output and the 
negative to ground. Test the input 
voltage. 

-12V should be displayed on the 
multimeter. 

 

7.5 PTT Testing Procedures 

To test the Interface Board PTT Circuit, follow the testing procedure below. 
 

Process Expected Outcome 

Turn off the Raspberry Pi 3 
microcomputer. 

All signals going to the radio should 
be silent and the Raspberry Pi 3 
microcomputer should be off. 

Measure the voltage going into the 
KX-170B Aircraft Radio pin 40 

The voltage going in should be 13.8V 

Press the button on the interface 
board labeled “PTT Test” 

The LED labeled “PTT” should light up 
when the button is pressed 

Measure the voltage going into the 
KX-170B Aircraft Radio pin 40 

The voltage going in should be 0V 
There should be an audible ‘click’ as 
the PTT voltage in the radio gets 
pulled to ground. 

Measure the voltage running through 
the resistor to the Raspberry Pi 3 
GPIO Pin 

It should be no larger than 1.2V 

 
 
 
 

7.6 TX Audio Testing Procedures 

To test the Interface Board TX Audio Circuit, follow the testing procedure below. 
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Process Expected Outcome 

Set up the KX-170B VHF Aircraft radio 
with the interface board and signal 
generator or the Raspberry Pi 3 as 
well 

All systems but the anemometer 
should be present for testing 
procedure 

Set the KX-170B VHF Aircraft radio to 
a frequency of 123.925MHz 

The dial on the KX-170B VHF Aircraft 
radio front plate should read 123.92 

Farther away in another room or 
outside have a receiving radio set to 
123.925MHz as well 

The other radio should be tuned to the 
same frequency as the KX-170B 
Radio 

Connect the interface board to the 
tone generator, or the Raspberry Pi 3 
and transmit a tone through it at 4kHz 

The audio should go through the 
interface board and transmitted out. 
The user with the receiving radio 
should hear the synthesized audio 

Increase the TX signal to 6kHz 
The audio should still be just as strong 
as when initially transmitted 

Increment the TX signal by 1kHz until 
the signal is no longer picked up by 
the user with the receiving radio 

The audio tone should decrease in 
signal strength until it becomes in 
audible or noise. The low pass filter 
should filter anything above ~17.2kHz 

 

7.7 RX Audio Testing Procedures 

To test the Interface Board RX Audio Circuit, follow the testing procedure below. 
 

Process Expected Outcome 

Set up the King KX-170B VHF Aircraft 
radio with the interface board, the 
Raspberry Pi 3 and an oscilloscope as 
well. 

All systems but the anemometer 
should be present for testing 
procedure. 

Set the King KX-170B VHF Aircraft 
radio to a frequency of 123.925MHz 

The dial on the King KX-170B VHF 
Aircraft radio front plate should read 
123.92 

Farther away in another room or 
outside have a transmitting radio set 
to 123.925MHz as well. 

The other radio should be tuned to the 
same frequency as the King KX-170B 
Radio 

Connect the interface board to the 
Raspberry Pi 3 and the oscilloscope to 
the analog to digital RX audio in. Then 
transmit a signal using the 
transmission radio. 

The audio should go through the 
interface board and pushed into the 
raspberry pi with a clearly visible 2.5V 
DC offset. This should be visible 
through the Oscilloscope 
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7.8 Anemometer Testing Procedures 

To test the Davis 7911 Anemometer, follow the testing procedure below. Note the 
revised wiring diagram for correct setup. 
 

Process Expected Outcome 

Setup the Davis 7911 Anemometer in 
a controlled environment with no wind 

The Davis 7911 Anemometer should 
be upright and components should be 
stationary 

Set up transistor with resistors at 
base, collector and emitter to base. 

No output yet as there is no input from 
anemometer connected yet 

Connect 3.3V input at emitter, ground 
at collector resistor. See schematic. 

No output yet as there is no input from 
anemometer connected yet 

Connect input from anemometer at 
base and output at collector to 
different channels from oscilloscope. 

No output yet as there is no input from 
anemometer connected yet 

Make the following connections: 
Black – 3.3V Input 
Red – Not Used 
Yellow – Wind Speed 
Green – Ground 

No output yet as there is no input from 
anemometer connected yet 

Turn 3.3V source on. Spin wind 
measuring cups on anemometer 
about once every 5 seconds to see 
output 

3.3V square wave output should be 
seen. Base is grounded through reed 
switch allowing the 3.3V at emitter 
flow through transistor. 

Increase the rate of the wind cups 
spinning 

The faster the cups spin and close the 
reed switch every time the more 
square wave outputs will be seen in a 
shorter amount of time. 

 

7.9 Wind Vane Testing Procedures 

To test the Davis 7911 Wind Vane, follow the testing procedure below. Note the 
revised wiring diagram for correct setup. 
 

Process Expected Outcome 

Setup the Davis 7911 Wind Vane in a 
controlled environment with no wind 
and point Wind Vane away from the 
Anemometer arm 

The Davis 7911 Anemometer should 
be upright and components should be 
stationary 

Set up operational amplifier for wind 
direction input. 

No output yet as there is no input from 
wind vane connected yet 

Power to op amp should be 12V+ and 
12V- 

No output yet as there is no input from 
wind vane connected yet 
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Make the following connections: 
Black – 3.3V Input 
Red – Wind Direction 
Yellow – Not Used 
Green – Ground 

No output yet as there is no input from 
wind vane connected yet 

Connect input and output to 
oscilloscope 

No output yet as there is no input from 
wind vane connected yet 

Turn 5V source on. Slowly move wind 
vane to adjust direction 

Input and output should display as a 
change on direction is seen 

 

7.10  Testing Modules on PCB 

After testing the components on the breadboard, it was decided to add other 
features for future debugging. Multiple LEDs and test points are used are on the 
device to be able to have a more accessible and user friendly debugging. The 
following table shows the LED and/or test point number to be found on the PCB 
and their corresponding device and expected outcome. 
 

Test Point / 
LED 

Device Expected Outcome 
Color / 
Name 

LED1 Comparator 

LED will be ON if:   
Comparator output is 3.3V meaning 
Carrier Detect is present.  
 
LED will be OFF if:   
No Carrier Detect is present. 

Green 

LED2 AGC 

LED will be ON if:   
Voltage from AGC is being amplified 
and sent to analog and digital 
converter.  
 
LED will be OFF if: Misconnection or 
no input voltage from AGC. 

Red 

LED3 RX Audio 

LED will be ON if:  
Received audio from user is being 
processed and then sent to ADC.  
 
LED will be OFF if:  
Misconnection or no audio is being 
received from user. 

White 

LED4 Wind Speed 

LED will be ON if:   
Wind speed is being updated and 
sent to be processed.  
 
LED will be OFF if:  

Yellow 
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Anemometer is either not properly 
connected or there is no change in 
the wind speed. 

LED5 Wind Direction 

LED will be ON if:   
Wind direction is being updated and 
sent to be processed.  
 
LED will be OFF if:   
Wind vane is either not connected 
properly or there is no change in 
wind direction. 

Yellow 

LED6 PTT Transistor 

LED will be ON if:   
PTT transistor connect to 3.3V at 
base. Note this 3.3V is not collector.  
 
LED will be OFF if:   
Transistor is open; no input is being 
received from PTT. 

Blue 

LED7 
Audio 
Compressor 

LED will be ON if:   
There is audio present as output  
 
LED will be OFF if:   
No audio being processed or output. 

Green 

LED8 ADC Channel 1 

LED will be ON if:   
AGC voltage is being received from 
TL084 op amp.  
 
LED will be OFF if:  
No AGC voltage is being received 
from TL084 op amp. 

Red 

LED9 ADC Channel 2 

LED will be ON if:   
RX Audio is being received from 
TL084 op amp.  
 
LED will be OFF if:  
No RX Audio is being received from 
TL084 op amp. 

Red 

LED10 ADC Channel 3 

LED will be ON if:  
Wind direction is being received 
from TL084 op amp.  
 
LED will be OFF if:  
No wind direction is being received 
from TL084 op amp. 

Red 

Test Point 1 3.3V Regulator 
Accessible TP to check if 3.3V+ 
regulator output is correct. 

TP1 
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Test Point 2 5V Regulator 
Accessible TP to check if 5V+ 
regulator output is correct. 

TP2 

Test Point 3 12V Regulator 
Accessible TP to check if 12V+ 
regulator output is correct. 

TP3 

Test Point 4 3.3V Inverter 
Accessible TP to check if 12V- 
output is correct from voltage 
inverter. 

TP4 

 

7.11  Raspberry Pi Testing Procedures 

To test the Raspberry Pi’s connection with the interface board, follow the testing 
procedure below. 
 

Process Expected Outcome 

Power on the Raspberry Pi from the 
Interface Board 

Red LED on Pi should turn on. Verify 
no signal LEDs on the Interface Board 
are on 

Press the CD Test Button on the 
Interface Board three times 

Verify that after a few seconds the 
PTT LED and the TX Audio LED on 
the Interface Board turn on 

Press the CD Test Button on the 
Interface Board four times, then hold 
once more, to simulate a transmit 
radio check 

Verify that after a few seconds the 
PTT LED and the TX Audio LED on 
the Interface Board turn on 

Connect headphones or speakers to 
the Raspberry Pi and once again 
press the CD Test Button on the 
Interface Board three times 

Verify that the Raspberry Pi plays a 
wind conditions broadcast with 
reasonable values. 

 

7.12  Unit Tests 

Because it will be hard to tests most of the “Build WAV File” process on a micro 
level, we will have to do most of the testing via message logging and writing 
separate testing scripts across the various sub functions the “Build WAV File” 
function has. In order to properly explain our testing plan for the sub functions of 
this function, you will find that below we have separated the testing plans for the 
various sub functions of the system into sections. Each section will include the 
testing scripts to be used for that particular sub function, as well as go over any 
messages that will be logged to keep track of errors.   
 
Before we go into each sub functions and how they will be tested, it is important to 
describe the way that all of the various testing scripts and messages will be linked 
back to the main “Build WAV File” function and organized. As for logging and 
messaging, there will be a master text file by the name of BuildWavFile.log whose 
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purpose will be to keep track of any error messages that happen across the system 
that are related to the “Build WAV File” function and its sub functions. This will be 
the acting message hub for all of the testing scripts and sub functions to post error 
messages that relate to the “Build WAV File” function. 
 

7.12.1 Clean and Format Passed in Audio Data Testing 

Procedures 

Testing Scripts 
 

Testing Script Success Condition 

Data.test.py 

The resulting digital values from the 
input file are equal to their respective 
digital unconverted values from the 
output file 

ByteLength.test.py 
The number of lines in the input and 
out files are the same 

 
Data.test.py  
The main goal for testing this sub function is to make sure that the converted and 
formatted data that was returned from this function matches up with the input data. 
Since the main goal of this sub function is essentially just to make some 
conversions, and does not majorly alter the data at all, we can use the opposite 
process to convert the formatted data back to see if we get the correct digital value. 
The only potential issue here is that this function subtracts 255 from the initial 
digital value to compensate for the voltage offset from the interface board used to 
push the entire signal into the positive range. Considering both options of adding 
the 255 digital value back to the number and then comparing the input value to the 
output number, or subtracting 255 from the input number and comparing that to 
the un converted output value, there really isn’t any major differences between 
them. We ended up choosing to subtract the 255 digital value, to compensate for 
the 3V digital offset, from the initial value and comparing that to the output data 
because this allows us to check and validate the conversion steps essentially 
halfway between the raw data form and the outputted data. While not totally 
different from the first option, this does provide a bit more credibility to the test due 
to the fact that we aren’t simple just reversing the logic of the initial function we are 
testing. If we went with the first option and based the test on the reversal of the 
initial function being tested and the logic of the function was wrong, simply 
reversing this process would lead to a test function with equally wrong logic. This 
first test will be to validate that the conversion from the raw data to the format we 
need for the WAVE file did not corrupt the value of the data even if it is represented 
in a different form.  
 
The second test we will have for this sub process, will be to check the byte sizes 
of both the input file, containing the raw audio samples, and the output file, 
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containing the converted and formatted audio data for the WAVE file. Even though 
the input data file contains 10 bit digital values while the output file contains the 
little endian 2’s complimented representation of the sample, which is 2 bytes in 
length, we can essentially make sure that the number of lines in the input file match 
the number of input lines in the output file. This is because each line, no matter 
which file you are reading from, represents one sample, so the line numbers 
effectively represent the number of samples contained in that file. While this is a 
simple test, it is important because we need to make sure that no samples we 
missed or left out of the conversions for any reason. Losing a sample could have 
drastic effects on the resulting output audio and can corrupt the resulting WAV file 
if the WAV file expects more or less bytes than is actually store in the data chunk 
of the file. This test will help us avoid file corruption due to miss calculated byte 
sizes in either the input or output audio data.  
 
As for any error messages this sub process may need to pass on to the 
BuildWavFile.log, we mainly need to focus on file input and output errors as well 
as any variable typing errors. Because file input and output is how we are receiving 
our input audio data as well as outputting our formatted audio data from this 
function, any file input or output errors need to be classified as critical errors to the 
system. Thus, any such file input or output errors need to be passed to the 
BuildWavFile.log file. Since the input and output files will always be named the 
same thing, and overwritten for each iteration of the “Build WAV File” function, the 
error messages we send to the log file can be the same for any file operational 
errors that are of the same type. For example, and errors pertaining to the opening 
of a file may be formatted as “ERROR – unable to open file: <filename>”, where 
<filename> will be replaced with the file name of the file that failed to open. These 
error messages can be seen in the complete error message table below. Likewise, 
since this sub processes uses so many data conversion and formatting methods, 
we need to make sure that we did not encounter any errors when executing these 
critical functions. Upon encountering one of these errors we will send a message 
to the error log. Upon the failure of this sub routine to open the error messaging 
log, the error will be send to the standard output of the raspberry pi. 
 
Error Messages 
 

Error Type Error Message 

Cannot Open Input Audio File 
“ERROR – unable to open file: 
audioIn.txt” 

Cannot Open Output Audio File 
“ERROR – unable to open file: 
audioout.txt” 

Cannot Read From Input Audio File 
“ERROR – unable to read from file: 
audioIn.txt” 

Cannot Write To Output Audio File 
“ERROR – unable to write to file: 
audioIn.txt” 

Error When Converting To 2’s 
Compliment 

“ERROR – Unable to convert sample 
to 2’s Compliment” 
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Error When Converting to Short 
Integer and Little Endian Format 

“ERROR – Unable to convert sample 
to Short Integer and Little Endian 
Format” 

 

7.12.2 Build Data Chunk, Build Format Chunk, and Build 

Header Chunk Testing 

Testing Scripts 
 

Testing Script Success Condition 

Feilds.test.py 
All fields are of the required byte 
length and any static/predefined fields 
values are correct 

ChunkSizes.test.py 

The number of bytes in each chunk is 
equal to the pre/defined static chunk 
size or the chunkSize field of the 
corresponding chunk 

DataLength.test.py 

The number of bytes after the first 8 
bytes of the data chunk is equal to the 
number in the chunkSize field of the 
data buffer 

 
Feilds.test.py  
 
The goal of this test is to verify that the all chunks in the resulting WAV file contain 
the correct fields and that any field with a pre-determined value has been set to 
that value. This test is important because it will determine if the resulting WAV file 
from the “Build WAV File” process is a valid wav file and that all fields in each 
chunk are populated. This will make sure no fields are missing. If this test fails, 
then it will pass a message to the BuildWavFile.log file with more details on what 
error was experienced. These messages are accounted for below.  
 
ChunkSizes.test.py  
 
There are a couple of main goals to this test script, however it can be said that this 
test script validates whether each chunk, as well as the file itself, is of the correct 
size recorded by the chunkSize in each chunk. While for the data and format 
chunks, this just means reading the value in the chunkSize fields and validating 
the chunks are in fact that length in bytes, the header chunk requires that the entire 
file length be check and will be kept track of as the other two size checks are 
happening. This actually works out in our favor as we have to essentially read the 
file byte by byte to get to the fields we need to get to. Lastly it is important to note 
that the Header chunk is always 12 bytes in length, so we will validate this first in 
this test script.  
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DataLength.test.py  
 
While the data size is validated in the testing for the “Clean and Format Raw Audio 
Data” sub process, we need to again validate that the number of bytes occupied 
by the data section of the wave file indeed match up to the number store in the 
data chunk’s subChukSize field. This is a check also being tested in the 
ChunkSizes.test.py testing script, but here we will make sure that the number of 
bytes per sample is the same as the number in the format chunks BlockAlign field, 
which tells any program reading the wave file how many bytes are in each “block” 
or sample to be read. This is especially important when reading multiple channels 
of audio since the number of bytes per sample is doubled to cover both the right 
and left channel. However, in this case we just need to make sure that the byte 
size here matches the number of bytes for each sample in the data section.  
 
Error Messages 
 

Error Type Error Message 

Incorrect Chunk ID 
“ERROR – incorrect chunk id in the: 
<chunk> Chunk” 

Missing Field 
“ERROR – Missing the <chunk field> 
in the: <chunk> Chunk” 

Invalid Field Value 
“ERROR – incorrect field value in the: 
<chunk> Chunk. Expected <expected 
value>. Received <received value>” 

Chunk Size does not match value in 
chunkSize field 

“ERROR – Size of: <chunk> Chunk 
does not equal read chunk size of 
<chunkSize field value>” 

 

7.13  System Testing Procedures 

To test the overall system once each individual component has been tested, follow 
the testing procedure below. 
 

Process Expected Outcome 

Connect the Davis 7911 Anemometer 
to the Interface Board 

They will be connected 

Connect the Radio to the Interface 
Board 

They will be connected 

Connect the Monitor and Keyboard to 
the Raspberry Pi 

They will be connected 

Connect the Raspberry Pi to the 
Interface Board 

They will be connected 

Connect the Power Supply to the 
Interface Board 

The system should power on. All 
power LEDs, including the Raspberry 
Pi’s red LED, should turn on  
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Set the Radio to a channel that is not 
used in the immediate vicinity 

Radio should be set to a new channel 

Set the wind vane to its north position 
and verify the wind cups are stationary 

N/A 

Key the handheld radio mic three 
times 

Verify wind conditions are broadcast 
with values of zero degrees and zero 
knots 

After 60 seconds, move the wind vane 
to its south position, 180 degrees from 
before 

Verify that a wind conditions update is 
broadcast with the values of 180 
degrees and still zero knots 

After 60 seconds, rotate the wind cups 
as fast as possible for at least five 
seconds 

Verify that a wind conditions update is 
broadcast with the values of 180 
degrees and greater than zero knots 

After 60 seconds, key the handheld 
radio mic four times  

Verify a transmit radio check prompt is 
broadcasted  

After 60 seconds, key the handheld 
radio mic four times  

Verify nothing happens for the 60 
seconds, and after the four keys a 
transmit radio check prompt is 
broadcasted 

Key the handheld radio mic and speak 
into the radio, once done speaking, 
unkey the mic 

Verify the message just spoken into 
the handheld radio is broadcasted and 
followed by a power level broadcast 

After 60 seconds, key the handheld 
radio mic three times  

Verify wind conditions are broadcast 

After 60 seconds, key the handheld 
radio mic one time  

Verify nothing happens 

After 60 seconds, key the handheld 
radio mic two times  

Verify nothing happens 

After 60 seconds, key the handheld 
radio mic five times  

Verify nothing happens 
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8 Management 

8.1 Milestones 

 

Figure 8.1 Milestone Chart 

Above is a short list of some of the main milestones our team had. It includes when 
the team completed and tested each revision of hardware made as well as when 
each main software function was implemented and tested.  

  

Milestone Date Completed

Team Formed 5/13/2016

Project Decided 5/22/2016

Specifactions Decided 6/1/2016

Breadboard Completed 7/15/2016

Breadboard Tested 7/20/2016

Breadboard Version 2 Completed 7/30/2016

Breadboard Version 2 Tested 8/15/2016

Protoboard Completed 9/15/2016

Protoboard Tested 9/16/2016

Protoboard Version 2 Completed 10/22/2016

Protoboard Version 2 Tested 10/26/2016

PCB Completed 11/5/2016

PCB Tested 11/6/2016

PCB Version 2 Completed 11/25/2016

PCB Version 2 Tested 11/28/2016

Main Loop Completed 10/2/2016

Main Loop Tested 10/24/2016

Wind Direction Function Completed 10/5/2016

Wind Direction Function Tested 10/10/2016

Wind Speed Function Completed 9/22/2016

Wind Speed Function Tested 10/1/2016

System Tested 11/28/2016

Web Server Implimented 10/30/2016
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8.3 Budget and Finances 

Our sponsors have provided us with a $750 budget for approved parts. Below is a 
list of items we purchased and their cost as well as which member bought them. 
The cost of these items, if they should exceed our $750 budget will be absorbed 
evenly by the team members.  
 

 
Figure 8.2 Team Budget as of 12/5/2016 

Item Purchased Quantity Price Shipping Cost Total Purchase Purchased by

PCB V1 10 4.09$             18.05$                58.95$                   Carmen

PCB V2 10 4.09$             58.85$                99.75$                   Carmen

Components 1 30.51$           -$                    30.51$                   Carmen

Components and Codec 1 34.27$           49.83$                84.10$                   Francisco

Components 1 61.68$           11.35$                73.03$                   Francisco

Components 1 6.39$             -$                    6.39$                     Francisco

Raspberry Pi 3 1 36.79$           -$                    36.79$                   Jordan

Pi Heatsinks 1 5.35$             -$                    5.35$                     Jordan

USB sound card 1 5.99$             -$                    5.99$                     Jordan

Pi Breakout Testing Kit 1 12.99$           -$                    12.99$                   Jordan

MicroSD Card 1 18.93$           -$                    18.93$                   Jordan

Codec 1 19.00$           13.99$                32.99$                   Jordan

Codec 1 19.00$           9.00$                  28.00$                   Jordan

MCP3008 2 8.50$             2.56$                  19.56$                   Mason

Codec Chip 1 4.25$             13.00$                17.25$                   Mason

530.58$                

Group Member
Percent of 

final cost

Contribution 

amount

Carmen 36%  $         189.21 

Francisco 31%  $         163.52 

Jordan 27%  $         141.04 

Mason 7%  $           36.81 

Total Cost
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8.4 Team Member Time Management 

  

Meetings / 

Learning / 

Research

Productive 

Effort / Report 

Writing

Meetings / 

Learning / 

Research

Productive 

Effort / Report 

Writing

Meetings / 

Learning / 

Research

Productive 

Effort / Report 

Writing

Meetings / 

Learning / 

Research

Productive 

Effort / Report 

Writing

1 5/29/2016 1 0 1 0 1 0 1 0

2 6/5/2016 4 2 4 2 4 2 4 2

3 6/12/2016 3 3 3 2 8 1 5 3.75

4 6/19/2016 5.5 2.5 12 4 4 4 5.5 7

7 6/26/2016 1 1 10 5 2 6 6 6

8 7/3/2016 4.5 10 3 3.5 3 3 10 1

9 7/10/2016 5 8 5 4 1 5 5 8

10 7/17/2016 4 9.5 2.5 6 3 2 1 5.5

11 7/24/2016 3 3 6 8 5 12 2 5

12 7/31/2016 5 12 3 8 4 5 5 6

13 8/7/2016 2.5 4 2.5 4 2.5 4 2.5 4

14 8/14/2016 0 0 8 7 4 2 0 0

15 8/21/2016 0 0 8 3 4 6 0 0

16 8/28/2016 1 5 7 5 7 3 7 1

17 9/4/2016 6 1 5 4 4 8 4 1

18 9/11/2016 4 7 4 6 2 3 4 7

19 9/18/2016 5 7 4 2 2 2 5 3

20 9/25/2016 8 2 7 3 5 2 8 8

21 10/2/2016 7 2 8 7 2 8 4 7

22 10/9/2016 2 3 7 7 1 7 7 7

23 10/16/2016 6 7 5 1 1 1 6 4

24 10/23/2016 4 6 7 4 2 8 8 5

25 10/30/2016 4 8 5 8 8 5 2 8

26 11/6/2016 4 3 6 5 5 8 1 3

27 11/13/2016 8 4 6 4 5 1 5 8

28 11/20/2016 4 6 4 4 7 2 6 2

29 11/27/2016 8 8 4 4 7 1 5 1

30 12/4/2016 2 1 4 7 3 7 7 2

111.5 125 151 127.5 106.5 118 126 115.25

241.25

Week
Week 

Ending Date

Jordan Carmen Mason Francisco

Time Spent

Total Time 236.5 278.5 224.5



 
 

134 
 

9 Appendix 

9.1 Datasheets 

9.1.1  TPS 63700 Voltage Inverter 

http://www.ti.com.cn/cn/lit/ds/symlink/tps63700.pdf 

9.1.2  TL084 Op-Amp 

http://www.ti.com.cn/cn/lit/ds/symlink/tl084.pdf 

9.1.3  LM234 Op-Amp 

http://www.ti.com/lit/ds/symlink/lm134.pdf 

9.1.4  2N4403 PNP Transistor 

https://www.fairchildsemi.com/datasheets/MM/MMBT4403.pdf 

9.1.5  2N4401 NPN Transistor 

http://www.tme.eu/en/Document/f8d055de9406c1d3890391b8977313b3/2N4401
BU.pdf 

9.1.6  2N3820 FET 

http://www.radiotechnika.hu/images/2N3820.pdf 

9.1.7  BC546 NPN Transistor 

http://www.onsemi.com/pub_link/Collateral/BC546-D.PDF 

9.1.8  LM393 Comparator 

http://www.ti.com/lit/ds/symlink/lm2903-n.pdf 

9.1.9  LM124W Op-Amp 

http://www.st.com/content/ccc/resource/technical/document/datasheet/60/2a/ed/7
f/ec/7e/4e/5c/CD00005087.pdf/files/CD00005087.pdf/jcr:content/translations/en.
CD00005087.pdf 

9.1.10 MCP3008 Analog to Digital Converter 

https://cdn-shop.adafruit.com/datasheets/MCP3008.pdf 

9.1.11 2N5458 JFET 

http://www.onsemi.com/pub_link/Collateral/2N5457-D.PDF 
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9.1.12 78L12 Voltage Regulators 

http://www.ti.com.cn/cn/lit/ds/symlink/lm78l05.pdf 

9.1.13 AC90-50D 

http://www.faa.gov/documentLibrary/media/Advisory_Circular/AC90-50D.pdf 

9.1.14 Raspberry Pi 3 Model B 

https://www.inet.se/files/pdf/1974044_0.pdf 


